You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
weston/spec/main.tex

410 lines
14 KiB

\documentclass{article}
\usepackage{palatino}
\author{Kristian Høgsberg\\
\texttt{krh@bitplanet.net}
}
\title{The Wayland Display Server}
\begin{document}
\maketitle
\section{Wayland Overview}
\begin{itemize}
\item wayland is a protocol for a new display server.
\item wayland is an implementation
\end{itemize}
\subsection{Replacing X11}
Over the last 10 years, a lot of functionality have slowly moved out
of the X server and into libraries or kernel drivers. It started with
freetype and fontconfig providing an alternative to the core X fonts
and direct rendering OpenGL as a graphics driver in a client side
library. Then cairo came along and provided a modern 2D rendering
library independent of X and compositing managers took over control of
the rendering of the desktop. Recently with GEM and KMS in the Linux
kernel, we can do modesetting outside X and schedule several direct
rendering clients. The end result is a highly modular graphics stack.
Wayland is a new display server building on top of all those
components. We’re trying to distill out the functionality in the X
server that is still used by the modern Linux desktop. This turns out
to be not a whole lot. Applications can allocate their own off-screen
buffers and render their window contents by themselves. In the end,
what’s needed is a way to present the resulting window surface to a
compositor and a way to receive input. This is what Wayland provides,
by piecing together the components already in the eco-system in a
slightly different way.
X will always be relevant, in the same way Fortran compilers and VRML
browsers are, but it’s time that we think about moving it out of the
critical path and provide it as an optional component for legacy
applications.
\section{Wayland protocol}
\subsection{Basic Principles}
The wayland protocol is a asynchronous object oriented protocol. All
requests are method invocations on some object. The request include
an object id that uniquely identifies an object on the server. Each
object implements an interface and the requests include an opcode that
identifies which method in the interface to invoke.
The wire protocol is determined from the C prototypes of the requests
and events. There is a straight forward mapping from the C types to
packing the bytes in the request written to the socket. It is
possible to map the events and requests to function calls in other
languages, but that hasn't been done at this point.
The server sends back events to the client, each event is emitted from
an object. Events can be error conditions. The event includes the
object id and the event opcode, from which the client can determine
the type of event. Events are generated both in repsonse to a request
(in which case the request and the event constitutes a round trip) or
spontanously when the server state changes.
\begin{itemize}
\item state is broadcast on connect, events sent out when state
change. client must listen for these changes and cache the state.
no need (or mechanism) to query server state.
\item server will broadcast presence of a number of global objects,
which in turn will broadcast their current state
\end{itemize}
\subsection{Connect Time}
\begin{itemize}
\item no fixed format connect block, the server emits a bunch of
events at connect time
\item presence events for global objects: output, compositor, input
devices
\end{itemize}
\subsection{Security and Authentication}
\begin{itemize}
\item mostly about access to underlying buffers, need new drm auth
mechanism (the grant-to ioctl idea), need to check the cmd stream?
\item getting the server socket depends on the compositor type, could
be a system wide name, through fd passing on the session dbus. or
the client is forked by the compositor and the fd is already opened.
\end{itemize}
\subsection{Creating Objects}
\begin{itemize}
\item client allocates object ID, uses range protocol
\item server tracks how many IDs are left in current range, sends new
range when client is about to run out.
\end{itemize}
\subsection{Compositor}
\begin{itemize}
\item a global object
\item broadcasts drm file name, or at least a string like drm:/dev/card0
\item commit/ack/frame protocol
\end{itemize}
\subsection{Surface}
created by the client
\begin{itemize}
\item attach
\item copy
\item damage
\item destroy
\item input region, opaque region
\item set cursor
\end{itemize}
\subsection{Input Group}
global object
\begin{itemize}
\item input group, keyboard, mouse
\item keyboard map, change events
\item pointer motion
\item enter, leave, focus
\item xkb on wayland
\item multi pointer wayland
\end{itemize}
\subsection{Output}
\begin{itemize}
\item global objects
\item a connected screen
\item laid out in a big coordinate system
\item basically xrandr over wayland
\end{itemize}
\subsection{Drag and Drop}
Multi-device aware. Orthogonal to rest of wayland, as it is its own
toplevel object. Since the compositor determines the drag target, it
works with transformed surfaces (dragging to a scaled down window in
expose mode, for example).
Issues:
\begin{itemize}
\item we can set the cursor image to the current cursor + dragged
object, which will last as long as the drag, but maybe an request to
attach an image to the cursor will be more convenient?
\item Should drag.send() destroy the object? There's nothing to do
after the data has been transferred.
\item How do we marshall several mime-types? We could make the drag
setup a multi-step operation: dnd.create, drag.offer(mime-type1,
drag.offer(mime-type2), drag.activate(). The drag object could send
multiple offer events on each motion event. Or we could just
implement an array type, but that's a pain to work with.
\item Middle-click drag to pop up menu? Ctrl/Shift/Alt drag?
\item Send a file descriptor over the protocol to let initiator and
source exchange data out of band?
\item Action? Specify action when creating the drag object? Ask
action?
\end{itemize}
New objects, requests and events:
- New toplevel dnd global. One method, creates a drag object:
dnd.start(new object id, surface, input device, mime types),
Starts drag for the device, if it's grabbed by the surface. drag
ends when button is released. Caller is responsible for
destroying the drag object.
- Drag object methods:
drag.destroy(id), destroy drag object.
drag.send(id, data), send drag data.
drag.accept(id, mime type), accept drag offer, called by
target surface.
- drag object events:
drag.offer(id, mime-types), sent to potential destination
surfaces to offer drag data. If the device leaves the window
or the originator cancels the drag, this event is sent with
mime-types = NULL.
drag.target(id, mime-type), sent to drag originator when a
target surface has accepted the offer. if a previous target
goes away, this event is sent with mime-type = NULL.
drag.data(id, data), sent to target, contains dragged data.
ends transaction on the target side.
Sequence of events:
\begin{itemize}
\item The initiator surface receives a click (which grabs the input
device to that surface) and then enough motion to decide that a drag
is starting. Wayland has no subwindows, so it's entirely up to the
application to decide whether or not a draggable object within the
surface was clicked.
\item The initiator creates a drag object by calling the create\_drag
method on the dnd global object. As for any client created object,
the client allocates the id. The create\_drag method also takes the
originating surface, the device that's dragging and the mime-types
supported. If the surface has indeed grabbed the device passed in,
the server will create an active drag object for the device. If the
grab was released in the meantime, the drag object will be
in-active, that is, the same state as when the grab is released. In
that case, the client will receive a button up event, which will let
it know that the drag finished. To the client it will look like the
drag was immediately cancelled by the grab ending.
The special mime-type application/x-root-target indicates that the
initiator is looking for drag events to the root window as well.
\item To indicate the object being dragged, the initiator can replace
the pointer image with an larger image representing the data being
dragged with the cursor image overlaid. The pointer image will
remain in place as long as the grab is in effect, since no other
surfaces receive enter/leave events.
\item As long as the grab is active (or until the initiator cancels
the drag by destroying the drag object), the drag object will send
"offer" events to surfaces it moves across. As for motion events,
these events contain the surface local coordinates of the device as
well as the list of mime-types offered. When a device leaves a
surface, it will send an offer event with an empty list of
mime-types to indicate that the device left the surface.
\item If a surface receives an offer event and decides that it's in an
area that can accept a drag event, it should call the accept method
on the drag object in the event. The surface passes a mime-type in
the request, picked from the list in the offer event, to indicate
which of the types it wants. At this point, the surface can update
the appearance of the drop target to give feedback to the user that
the drag has a valid target. If the offer event moves to a
different drop target (the surface decides the offer coordinates is
outside the drop target) or leaves the surface (the offer event has
an empty list of mime-types) it should revert the appearance of the
drop target to the inactive state. A surface can also decide to
retract its drop target (if the drop target disappears or moves, for
example), by calling the accept method with a NULL mime-type.
\item When a target surface sends an accept request, the drag object
will send a target event to the initiator surface. This tells the
initiator that the drag currently has a potential target and which
of the offered mime-types the target wants. The initiator can
change the pointer image or drag source appearance to reflect this
new state. If the target surface retracts its drop target of if the
surface disappears, a target event with a NULL mime-type will be
sent.
If the initiator listed application/x-root-target as a valid
mime-type, dragging into the root window will make the drag object
send a target event with the application/x-root-target mime-type.
\item When the grab is released (indicated by the button release
event), if the drag has an active target, the initiator calls the
send method on the drag object to send the data to be transferred by
the drag operation, in the format requested by the target. The
initiator can then destroy the drag object by calling the destroy
method.
\item The drop target receives a data event from the drag object with
the requested data.
\end{itemize}
MIME is defined in RFC's 2045-2049. A registry of MIME types is
maintained by the Internet Assigned Numbers Authority (IANA).
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/
\section{Types of compositors}
\subsection{System Compositor}
\begin{itemize}
\item ties in with graphical boot
\item hosts different types of session compositors
\item lets us switch between multiple sessions (fast user switching,
secure/personal desktop switching)
\item multiseat
\item linux implementation using libudev, egl, kms, evdev, cairo
\item for fullscreen clients, the system compositor can reprogram the
video scanout address to source fromt the client provided buffer.
\end{itemize}
\subsection{Session Compositor}
\begin{itemize}
\item nested under the system compositor. nesting is feasible because
protocol is async, roundtrip would break nesting
\item gnome-shell
\item moblin
\item compiz?
\item kde compositor?
\item text mode using vte
\item rdp session
\item fullscreen X session under wayland
\item can run without system compositor, on the hw where it makes
sense
\item root window less X server, bridging X windows into a wayland
session compositor
\end{itemize}
\subsection{Embbedding Compositor}
X11 lets clients embed windows from other clients, or lets client copy
pixmap contents rendered by another client into their window. This is
often used for applets in a panel, browser plugins and similar.
Wayland doesn't directly allow this, but clients can communicate GEM
buffer names out-of-band, for example, using d-bus or as command line
arguments when the panel launches the applet. Another option is to
use a nested wayland instance. For this, the wayland server will have
to be a library that the host application links to. The host
application will then pass the wayland server socket name to the
embedded application, and will need to implement the wayland
compositor interface. The host application composites the client
surfaces as part of it's window, that is, in the web page or in the
panel. The benefit of nesting the wayland server is that it provides
the requests the embedded client needs to inform the host about buffer
updates and a mechanism for forwarding input events from the host
application.
\begin{itemize}
\item firefox embedding flash by being a special purpose compositor to
the plugin
\end{itemize}
\section{Implementation}
what's currently implemented
\subsection{Wayland Server Library}
\texttt{libwayland-server.so}
\begin{itemize}
\item implements protocol side of a compositor
\item minimal, doesn't include any rendering or input device handling
\item helpers for running on egl and evdev, and for nested wayland
\end{itemize}
\subsection{Wayland Client Library}
\texttt{libwayland.so}
\begin{itemize}
\item minimal, designed to support integration with real toolkits such as
Qt, GTK+ or Clutter.
\item doesn't cache state, but lets the toolkits cache server state in
native objects (GObject or QObject or whatever).
\end{itemize}
\subsection{Wayland System Compositor}
\item implementation of the system compositor
\item uses libudev, eagle (egl), evdev and drm
\item integrates with ConsoleKit, can create new sessions
\item allows multi seat setups
\item configurable through udev rules and maybe /etc/wayland.d type thing
\end{itemize}
\subsection{X Server Session}
\begin{itemize}
\item xserver module and driver support
\item uses wayland client library
\item same X.org server as we normally run, the front buffer is a wayland
surface but all accel code, 3d and extensions are there
\item when full screen the session compositor will scan out from the X
server wayland surface, at which point X is running pretty much as it
does natively.
\end{itemize}
\end{document}