compositor: implement inverse matrix transformation

Implement 4x4 matrix inversion based on LU-decomposition with partial
pivoting.

Instead of simply computing the inverse matrix explicitly, introduce the
type struct weston_inverse_matrix for storing the LU-decomposition and
the permutation from pivoting. Using doubles, this struct has greater
precision than struct weston_matrix.

If you need only few (less than 5, presumably) multiplications with the
inverse matrix, is it cheaper to use weston_inverse_matrix, and not
compute the inverse matrix explicitly into a weston_matrix.

Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
dev
Pekka Paalanen 13 years ago
parent 061b7471f1
commit 75b47ec45d
  1. 2
      src/compositor.c
  2. 2
      src/compositor.h
  3. 123
      src/matrix.c
  4. 11
      src/matrix.h

@ -545,7 +545,7 @@ static void
weston_surface_update_transform(struct weston_surface *surface)
{
struct weston_matrix *matrix = &surface->transform.matrix;
struct weston_matrix *inverse = &surface->transform.inverse;
struct weston_inverse_matrix *inverse = &surface->transform.inverse;
struct weston_transform *tform;
if (!surface->transform.dirty)

@ -230,7 +230,7 @@ struct weston_surface {
/* derived state, set up by weston_surface_update_transform */
struct weston_matrix matrix;
struct weston_matrix inverse;
struct weston_inverse_matrix inverse;
int enabled;
} transform;

@ -1,5 +1,6 @@
/*
* Copyright © 2011 Intel Corporation
* Copyright © 2012 Collabora, Ltd.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
@ -22,6 +23,7 @@
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <GLES2/gl2.h>
#include <wayland-server.h>
@ -101,9 +103,126 @@ weston_matrix_transform(struct weston_matrix *matrix, struct weston_vector *v)
*v = t;
}
static inline void
swap_rows(double *a, double *b)
{
unsigned k;
double tmp;
for (k = 0; k < 13; k += 4) {
tmp = a[k];
a[k] = b[k];
b[k] = tmp;
}
}
static inline unsigned
find_pivot(double *column, unsigned k)
{
unsigned p = k;
for (++k; k < 4; ++k)
if (fabs(column[p]) < fabs(column[k]))
p = k;
return p;
}
/*
* reference: Gene H. Golub and Charles F. van Loan. Matrix computations.
* 3rd ed. The Johns Hopkins University Press. 1996.
* LU decomposition, forward and back substitution: Chapter 3.
*/
WL_EXPORT int
weston_matrix_invert(struct weston_matrix *inverse,
weston_matrix_invert(struct weston_inverse_matrix *inverse,
const struct weston_matrix *matrix)
{
return -1; /* fail */
double A[16];
unsigned p[4] = { 0, 1, 2, 3 };
unsigned i, j, k;
unsigned pivot;
double pv;
for (i = 16; i--; )
A[i] = matrix->d[i];
/* LU decomposition with partial pivoting */
for (k = 0; k < 4; ++k) {
pivot = find_pivot(&A[k * 4], k);
if (pivot != k) {
unsigned tmp = p[k];
p[k] = p[pivot];
p[pivot] = tmp;
swap_rows(&A[k], &A[pivot]);
}
pv = A[k * 4 + k];
if (fabs(pv) < 1e-9)
return -1; /* zero pivot, not invertible */
for (i = k + 1; i < 4; ++i) {
A[i + k * 4] /= pv;
for (j = k + 1; j < 4; ++j)
A[i + j * 4] -= A[i + k * 4] * A[k + j * 4];
}
}
memcpy(inverse->LU, A, sizeof(A));
memcpy(inverse->p, p, sizeof(p));
return 0;
}
WL_EXPORT void
weston_matrix_inverse_transform(struct weston_inverse_matrix *inverse,
struct weston_vector *v)
{
/* Solve A * x = v, when we have P * A = L * U.
* P * A * x = P * v => L * U * x = P * v
* Let U * x = b, then L * b = P * v.
*/
unsigned *p = inverse->p;
double *LU = inverse->LU;
double b[4];
unsigned k, j;
/* Forward substitution, column version, solves L * b = P * v */
/* The diagonal of L is all ones, and not explicitly stored. */
b[0] = v->f[p[0]];
b[1] = (double)v->f[p[1]] - b[0] * LU[1 + 0 * 4];
b[2] = (double)v->f[p[2]] - b[0] * LU[2 + 0 * 4];
b[3] = (double)v->f[p[3]] - b[0] * LU[3 + 0 * 4];
b[2] -= b[1] * LU[2 + 1 * 4];
b[3] -= b[1] * LU[3 + 1 * 4];
b[3] -= b[2] * LU[3 + 2 * 4];
/* backward substitution, column version, solves U * y = b */
#if 1
/* hand-unrolled, 25% faster for whole function */
b[3] /= LU[3 + 3 * 4];
b[0] -= b[3] * LU[0 + 3 * 4];
b[1] -= b[3] * LU[1 + 3 * 4];
b[2] -= b[3] * LU[2 + 3 * 4];
b[2] /= LU[2 + 2 * 4];
b[0] -= b[2] * LU[0 + 2 * 4];
b[1] -= b[2] * LU[1 + 2 * 4];
b[1] /= LU[1 + 1 * 4];
b[0] -= b[1] * LU[0 + 1 * 4];
b[0] /= LU[0 + 0 * 4];
#else
for (j = 3; j > 0; --j) {
b[j] /= LU[j + j * 4];
for (k = 0; k < j; ++k)
b[k] -= b[j] * LU[k + j * 4];
}
b[0] /= LU[0 + 0 * 4];
#endif
/* the result */
for (j = 0; j < 4; ++j)
v->f[j] = b[j];
}

@ -1,5 +1,6 @@
/*
* Copyright © 2008-2011 Kristian Høgsberg
* Copyright © 2012 Collabora, Ltd.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
@ -27,6 +28,11 @@ struct weston_matrix {
GLfloat d[16];
};
struct weston_inverse_matrix {
double LU[16]; /* column-major */
unsigned p[4]; /* permutation */
};
struct weston_vector {
GLfloat f[4];
};
@ -44,7 +50,10 @@ void
weston_matrix_transform(struct weston_matrix *matrix, struct weston_vector *v);
int
weston_matrix_invert(struct weston_matrix *inverse,
weston_matrix_invert(struct weston_inverse_matrix *inverse,
const struct weston_matrix *matrix);
void
weston_matrix_inverse_transform(struct weston_inverse_matrix *inverse,
struct weston_vector *v);
#endif /* WESTON_MATRIX_H */

Loading…
Cancel
Save