This commit sets the version numbers for all added/created objects. The
wl_compositor.create_surface implementation was altered to create a surface
with the same version as the underlying wl_compositor. Since no other
"child interfaces" have version greater than 1, they were all hard-coded to
version 1.
Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
In embedded environments, devices that appear as evdev "keyboards" often
have no resemblence to PC-style keyboards. It is not uncommon for such
environments to have no concept of modifier keys and no need for XKB key
mapping; in these cases libxkbcommon initialization becomes unnecessary
startup overhead. On some SOC platforms, xkb keymap compilation can
account for as much as 1/3 - 1/2 of the total compositor startup time.
This patch introduces a 'use_xkbcommon' flag in the core compositor
structure that indicates whether the compositor is running in "raw
keyboard" mode. In raw keyboard mode, the compositor bypasses all
libxkbcommon initialization and processing. 'key' events containing the
integer keycode will continue to be delivered via the wl_keyboard
interface, but no 'keymap' event will be sent to clients. No modifier
handling or keysym mapping is performed in this mode.
Note that upstream sample apps (e.g., weston-terminal or the
desktop-shell client) will not recognize raw keycodes and will not react
to keypresses when the compositor is operating in raw keyboard mode.
This is expected behavior; key events are still being sent to the
client, the client (and/or its toolkit) just isn't written to handle
keypresses without doing xkb keysym mapping. Applications written
specifically for such embedded environments would be handling keypresses
via the raw keycode delivered as part of the 'key' event rather than
using xkb keysym mapping.
Whether to use xkbcommon is a global option that applies to all
compositor keyboard devices on the system; it is an all-or-nothing flag.
This patch simply adds conditional checks on whether xkbcommon is to be
used or not.
v3 don't send zero as the file descriptor - instead send the result of
opening /dev/null
v2 by Rob Bradford <rob@linux.intel.com>: the original version of the
patch used a "raw_keycodes" flag instead of the "use_xkbcommon" used in
this patch.
v1: Reviewed-by: Singh, Satyeshwar <satyeshwar.singh@intel.com>
v1: Reviewed-by: Bob Paauwe <bob.j.paauwe@intel.com>
This change tweaks weston_pointer_clamp to take into consideration if a
seat is constrained to a particular output by only considering the
pointer position valid if it is within the output we a constrained to.
This function is also used for the initial warping of the pointer when a
constraint is first established.
The other two changes are the application of the constraint when either
a new device added or a new output created and therefore outputs and
input devices can be brought up in either order.
v2: the code in create_output_for_connector has been spun off into a
new function setup_output_seat_constraint (Ander). The inappropriate
warping behaviour has been resolved by using weston_pointer_clamp
(Pekka).
This refactors the code out from clip_pointer_motion into a function of
its own which can then be used elsewhere to clamp the pointer
coordinates to the range of the outputs.
This change also makes the caller of clip_pointer_motion use this new
function.
This commit adds a weston_buffer structure to replace wl_buffer. This way
we can hold onto buffers by just their resource. In order to do this, the
every renderer.attach function has to fill in the weston_buffer.width and
weston_buffer.height fields.
Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
Because of its links to selection.c and xwayland, a destroy_signal field
was also added to wl_data_source. Before selection.c and xwayland were
manually initializing the resource.destroy_signal field so that it could be
used without a valid resource.
Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
When the spring goes outside the envelope, we have a few options for
bringing it back: either just let it overshoot, bounce off the limit or
just clamp it. Instead of controlling that with #ifdef, let's make it
a part of the spring state.
xeyes works as expected now. subwindows are popped also as expected. This
patch should fix the following:
https://bugs.freedesktop.org/show_bug.cgi?id=59983
Signed-off-by: Tiago Vignatti <tiago.vignatti@intel.com>
This is the first in what will be a series of weston patches to convert
instances of wl_resource to pointers so we can make wl_resource opaque.
This patch handles weston_surface and should be the most invasive of the
entire series. I am sending this one out ahead of the rest for review.
Specifically, my machine is not set up to build XWayland so I have no
ability to test it fully. Could someone please test with XWayland and let
me know if this causes problems?
Because a surface may be created from XWayland, the resource may not always
exist. Therefore, a destroy signal was added to weston_surface and
everything used to listen to surface->resource.destroy_signal now listens
to surface->destroy_signal.
It may happen that you e.g. fullscreen a 800x600 surface with
buffer_scale 1 (e.g. a 800x600 buffer) on an output that is
otherwise scale 2. In this case we want to temporarily set
the output scale to 1, as we're really scanning out of a
scale 1 buffer. This causes us to e.g. report the input
positions in the right place, etc.
When we restore the original mode we also restore the original
scale.
Note that the scale change is a purely compositor internal change,
to clients it still looks like the output is scale 2.
The current config parser, parses the ini file and pulls out the values
specified by the struct config_section passed to parse_config_file() and
then throw the rest away. This means that every place we want to get
info out of the ini file, we have to parse the whole thing again. It's not
a big overhead, but it's also not a convenient API.
This patch adds a parser that parses the ini file to a data structure and
puts that in weston_compositor->config along with API to query comfig
keys from the data structure. The old parser is still available, but
we'll transition to the new approach over the next few commits.
Both GL and pixman renderer (pixman probably only because GL did?)
return the screen capture image as y-flipped, therefore Weston y-flips
it again. However, the future rpi-renderer can produce only right-way-up
(non-flipped) screen captures, and does not need an y-flip.
Add a capability flag for y-flip, which the rpi-renderer will not set,
to get screen captures the right way up.
The wcap recording code needs yet another temporary buffer for the
non-flipped case, since the WCAP format is flipped, and the code
normally overwrites the input image as it compresses it. This becomes
difficult, if the compressor is supposed to flip while processing.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.co.uk>
The upcoming rpi-renderer cannot handle arbitrary rotations. Introduce
Weston capability bits, and add a bit for arbitrary rotation. GL and
Pixman renderers support it.
Shell or any other module must not produce surface transformations with
rotation, if the capability bit is not set. Do not register the surface
rotation binding in desktop shell, if arbitary rotation is not
supported.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.co.uk>
If you specify e.g. scale=2 in weston.ini an output section for the
X11 backend we automatically upscale all normal surfaces by this
amount. Additionally we respect a buffer_scale set on the buffer to
mean that the buffer is already in a scaled form.
This works with both the gl and the pixman renderer. The non-X
backends compile and work, but don't support changing the output
scale (they do downscale as needed due to buffer_scale though).
This also sends the new "scale" and "done" events on wl_output,
making clients aware of the scale.
This set of changes adds support for searching for a given config file
in the directories listed in $XDG_CONFIG_DIRS if it wasn't found in
$XDG_CONFIG_HOME or ~/.config. This allows packages to install custom
config files in /etc/xdg/weston, for example, thus allowing them to
avoid dealing with home directories.
To avoid a TOCTOU race the config file is actually open()ed during the
search. Its file descriptor is returned and stored in the compositor
for later use when performing subsequent config file parses.
Signed-off-by: Ossama Othman <ossama.othman@intel.com>
The subsurface-server-protocol.h header should not be included
by any headers that are part of the SDK since it is not exported.
Otherwise, SDK consumers will break during compilation.
Move this include from compositor.h to compositor.c.
Fixes https://bugs.freedesktop.org/show_bug.cgi?id=64537
Signed-off-by: U. Artie Eoff <ullysses.a.eoff@intel.com>
The shell needs to redirect some actions to the parent surface, when
they originally target a sub-surface. This patch implements the
following:
- Move, resize, and rotate bindings always target the parent surface.
- Opacity (full-surface alpha) binding targets the parent surface. This
is broken, because it should change the opacity of the whole compound
window, which is difficult to implement in the renderer.
- click_to_activate_binding() needs to check the shell surface type from
the main surface, because sub-surface would produce SHELL_SURFACE_NONE
and prevent activation.
- Also activate() needs to check the type from the main surface, and
restack the main surface. Keyboard focus is assigned to the original
(sub-)surface.
- focus_state_surface_destroy() needs to handle sub-surfaces: only the
main surface will be in a layer list. If the destroyed surface is
indeed a sub-surface, activate the main surface next. This way a
client that destroys a focused sub-surface still retains focus in the
same window.
- The workspace_manager.move_surface request can accept also
sub-surfaces, and it will move the corresponding main surface.
Changes in v2:
- do not special-case keyboard focus for sub-surfaces
- fix surface type checks for sub-surfaces in shell, fix restacking of
sub-surfaces in shell, fix focus_state_surface_destroy()
Changes in v3:
- Renamed weston_surface_get_parent() to
weston_surface_get_main_surface() to be more explicit that this is
about sub-surfaces
- Fixed move_surface_to_workspace() to handle keyboard focus on a
sub-surface.
- Used a temporary variable in several places to clarify code, instead
of reassigning a variable.
- Fixed workspace_manager_move_surface() to deal with sub-surfaces.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Implement the basic protocol for sub-surfaces:
- expose wl_subcompositor global interface
- error checking on protocol calls
- associate a parent wl_surface to a sub-surface
- introduce the sub-surface role, which is exclusive
- an implementation of the wl_subsurface interface
- allow nesting of sub-surfaces
- proper surface transformation inheritance from parent to sub-surfaces
- two different modes of wl_surface.commit for sub-surfaces
- hook sub-surfaces up to repaint by modifying the repaint list code
Struct weston_subsurface is dynamically allocated. For sub-surfaces, it
is completely populated.
For parent surfaces, weston_subsurface acts only as a link for stacking
order purposes. The wl_resource is unused, parent_destroy_listener is
not registered, the transform is not linked, etc.
Sub-surfaces are not added directly into layers for display or input.
Instead, they are hooked up via the sub-surface list present in parent
weston_surface. This way sub-surfaces are inherently linked to the
parent surface, and cannot be displayed unless the parent is mapped,
too. This also eases restacking, as only the parent will be in a layer
list. Also, only the main surface should be subject to shell actions.
The surface list rebuilding in weston_output_repaint() is modified to
process sub-surface lists, if they are non-empty. The sub-surface list
always contains the parent, too, unless empty. The collection of
frame_callback_list is moved to a later loop, to streamline the surface
list rebuild functions.
Features still lacking are:
- full-surface alpha support for compound windows
Changes in v2:
- fix a bug in surface mapping: commit a sub-surface would cause the
main surface to never be mapped.
- remove debug printfs
- detect attempt of making a surface its own parent
- always zero-alloc weston_subsurface
- apply wl_subsurface.set_position in commit, not immediately
- add weston_surface_to_subsurface()
- implement sub-surface commit modes parent-cached and independent
- implement wl_subcompositor.destroy and wl_subsurface.destroy
Changes in v3:
- rebased, and use the new transform inheritance code
- squashed the commit "add sub-surfaces to repaint list"
- fixed a buffer reference leak in commit_from_cache()
- Rewrite the sub-surface destructor code, and make it leave the
wl_subsurface protocol object inert, if one destroys the corresponding
wl_surface.
- replaced set_commit_mode with set_sync and set_desync
- allowed sub-surface nesting, and fixed repaint accordingly
- implemented nested sub-surface commit modes
- Made the sub-surface order changes from wl_subsurface.place_above and
.place_below to be applied when the parent surface state is applied,
instead of immediately. This conforms with the protocol specification
now.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Add protocol for sub-surfaces, wl_subcompositor as the global interface,
and wl_subsurface as the per-surface interface extension.
This patch is meant to be reverted, once sub-surfaces are moved into
Wayland core.
Changes in v2:
- Rewrite wl_subcompositor.get_subsurface description, and move mapping
and commit details into wl_subsurface description. Check the wording
in wl_subsurface.set_position description.
- Add wl_subsurface.set_commit_mode request, and document it, with the
commit_mode enum. Add bad_value error code for wl_subsurface.
- Moved the protocol into Weston repository so we can land it upstream
sooner for public exposure. It is to be moved into Wayland core later.
- Add destroy requests to both wl_subcompositor and wl_subsurface, and
document them. Experience has showed, that interfaces should always
have a destructor unless there is a good and future-proof reason to not
have it.
Changes in v3:
- Specify, that wl_subsurface will become inert, if the corresponding
wl_surface is destroyed, instead of requiring a certain destruction
order.
- Replaced wl_subsurface.set_commit_mode with wl_subsurface.set_sync and
wl_subsurface.set_desync. Parent-cached commit mode is now called
synchronized, and independent mode is desynchronized. Removed
commit_mode enum, and bad_value error.
- Added support for nested sub-surfaces.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Currently the core input code does surface picking before calling into
the focus callback of the current grab. Not all grabs need to pick a
surface however, so we're doing work we don't have to in those cases.
For example, the shell move and resize grabs don't need to pick and the
default grab in implicit grab mode doesn't either.
With this change, the pointer grab mechanism is now very simple:
the focus callback is called whenever the pointer may have a new focus,
the motion callback is called whenever the pointer moves and
the button callback whenever a button is pressed or released.
This was another complication that we had to have to support the
split between libwayland-server and weston. Different grabs want to send
events relative to different surfaces at different times. The default
grab switches between sending coordinates relative to the 'current' surface,
that is the surface the pointer is currently above, or the 'clicked'
surface, in case of an implicit grab.
The grab focus was set by the grab implementation and the core input code
would transform the pointer position to surface relative coordinates for the
grab focus and store in grab->x/y.
Now we can just let the grab implementation transform the pointer
coordinates itself, leaving the implementation free to transform
according to whichever surface it wants. Or not transform at all if
it doesn't need surface relative coordinates (like the shell move and resize
grabs).
The current surface field was used to track the surface the pointer was
currently over along with pointer position relative to that surface,
regardless of implicit or explicit grabs. The main purpose was to restore
the default grab when another grab terminated. We can now just repick in
that case and avoid keeping that state around, with the destroy listener
overhead that involves.
There was one other use case - we used to optimize out calls to
weston_pointer_set_focus() if the focus didn't actually change. We can
still do that, but we have to do that in the default_grab_focus() handler
and compare against weston_pointer->focus instead.
struct weston_surface is now the only surface type we have (in core, shell.c
has shell_surface, of course). A lot of code gets simpler and we never
have to try to guess whether an API takes a wl_surface or a weston_surface.
We can now update the drag icon position directly from the configure
handler or the grab motion handler, and no longer need
weston_seat_update_drag_surface().
Previously we just got the drag_icon signal and had to figure out what
changed. Now we can directly setup or release the drag icon when the
drag starts and stops.