/* * Copyright 2020 Collabora, Ltd. * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "config.h" #include #include "weston-test-client-helper.h" #include "weston-test-fixture-compositor.h" #include "color_util.h" struct setup_args { struct fixture_metadata meta; enum renderer_type renderer; bool color_management; }; static const int ALPHA_STEPS = 256; static const int BLOCK_WIDTH = 3; static const struct setup_args my_setup_args[] = { { .renderer = RENDERER_PIXMAN, .color_management = false, .meta.name = "pixman" }, { .renderer = RENDERER_GL, .color_management = false, .meta.name = "GL" }, { .renderer = RENDERER_GL, .color_management = true, .meta.name = "GL sRGB EOTF" }, }; static enum test_result_code fixture_setup(struct weston_test_harness *harness, const struct setup_args *arg) { struct compositor_setup setup; compositor_setup_defaults(&setup); setup.renderer = arg->renderer; setup.width = BLOCK_WIDTH * ALPHA_STEPS; setup.height = 16; setup.shell = SHELL_TEST_DESKTOP; if (arg->color_management) { weston_ini_setup(&setup, cfgln("[core]"), cfgln("color-management=true")); } return weston_test_harness_execute_as_client(harness, &setup); } DECLARE_FIXTURE_SETUP_WITH_ARG(fixture_setup, my_setup_args, meta); static void set_opaque_rect(struct client *client, struct surface *surface, const struct rectangle *rect) { struct wl_region *region; region = wl_compositor_create_region(client->wl_compositor); wl_region_add(region, rect->x, rect->y, rect->width, rect->height); wl_surface_set_opaque_region(surface->wl_surface, region); wl_region_destroy(region); } static uint32_t premult_color(uint32_t a, uint32_t r, uint32_t g, uint32_t b) { uint32_t c = 0; c |= a << 24; c |= (a * r / 255) << 16; c |= (a * g / 255) << 8; c |= a * b / 255; return c; } static void unpremult_float(struct color_float *cf) { if (cf->a == 0.0f) { cf->r = 0.0f; cf->g = 0.0f; cf->b = 0.0f; } else { cf->r /= cf->a; cf->g /= cf->a; cf->b /= cf->a; } } static void fill_alpha_pattern(struct buffer *buf) { void *pixels; int stride_bytes; int w, h; int y; assert(pixman_image_get_format(buf->image) == PIXMAN_a8r8g8b8); pixels = pixman_image_get_data(buf->image); stride_bytes = pixman_image_get_stride(buf->image); w = pixman_image_get_width(buf->image); h = pixman_image_get_height(buf->image); assert(w == BLOCK_WIDTH * ALPHA_STEPS); for (y = 0; y < h; y++) { uint32_t *row = pixels + y * stride_bytes; uint32_t step; for (step = 0; step < (uint32_t)ALPHA_STEPS; step++) { uint32_t alpha = step * 255 / (ALPHA_STEPS - 1); uint32_t color; int i; color = premult_color(alpha, 0, 255 - alpha, 255); for (i = 0; i < BLOCK_WIDTH; i++) *row++ = color; } } } static bool compare_float(float ref, float dst, int x, const char *chan, float *max_diff) { #if 0 /* * This file can be loaded in Octave for visualization. * * S = load('compare_float_dump.txt'); * * rvec = S(S(:,1)==114, 2:3); * gvec = S(S(:,1)==103, 2:3); * bvec = S(S(:,1)==98, 2:3); * * figure * subplot(3, 1, 1); * plot(rvec(:,1), rvec(:,2) .* 255, 'r'); * subplot(3, 1, 2); * plot(gvec(:,1), gvec(:,2) .* 255, 'g'); * subplot(3, 1, 3); * plot(bvec(:,1), bvec(:,2) .* 255, 'b'); */ static FILE *fp = NULL; if (!fp) fp = fopen("compare_float_dump.txt", "w"); fprintf(fp, "%d %d %f\n", chan[0], x, dst - ref); fflush(fp); #endif float diff = fabsf(ref - dst); if (diff > *max_diff) *max_diff = diff; /* * Allow for +/- 1.5 code points of error in non-linear 8-bit channel * value. This is necessary for the BLEND_LINEAR case. * * With llvmpipe, we could go as low as +/- 0.65 code points of error * and still pass. * * AMD Polaris 11 would be ok with +/- 1.0 code points error threshold * if not for one particular case of blending (a=254, r=0) into r=255, * which results in error of 1.29 code points. */ if (diff < 1.5f / 255.f) return true; testlog("x=%d %s: ref %f != dst %f, delta %f\n", x, chan, ref, dst, dst - ref); return false; } enum blend_space { BLEND_NONLINEAR, BLEND_LINEAR, }; static bool verify_sRGB_blend_a8r8g8b8(uint32_t bg32, uint32_t fg32, uint32_t dst32, int x, struct color_float *max_diff, enum blend_space space) { struct color_float bg = a8r8g8b8_to_float(bg32); struct color_float fg = a8r8g8b8_to_float(fg32); struct color_float dst = a8r8g8b8_to_float(dst32); struct color_float ref; bool ok = true; unpremult_float(&bg); unpremult_float(&fg); unpremult_float(&dst); if (space == BLEND_LINEAR) { sRGB_linearize(&bg); sRGB_linearize(&fg); } ref.r = (1.0f - fg.a) * bg.r + fg.a * fg.r; ref.g = (1.0f - fg.a) * bg.g + fg.a * fg.g; ref.b = (1.0f - fg.a) * bg.b + fg.a * fg.b; if (space == BLEND_LINEAR) sRGB_delinearize(&ref); ok = compare_float(ref.r, dst.r, x, "r", &max_diff->r) && ok; ok = compare_float(ref.g, dst.g, x, "g", &max_diff->g) && ok; ok = compare_float(ref.b, dst.b, x, "b", &max_diff->b) && ok; return ok; } static uint8_t red(uint32_t v) { return (v >> 16) & 0xff; } static uint8_t blue(uint32_t v) { return v & 0xff; } static bool pixels_monotonic(const uint32_t *row, int x) { bool ret = true; if (red(row[x + 1]) > red(row[x])) { testlog("pixel %d -> next: red value increases\n", x); ret = false; } if (blue(row[x + 1]) < blue(row[x])) { testlog("pixel %d -> next: blue value decreases\n", x); ret = false; } return ret; } static void * get_middle_row(struct buffer *buf) { const int y = (BLOCK_WIDTH - 1) / 2; /* middle row */ void *pixels; int stride_bytes; assert(pixman_image_get_width(buf->image) >= BLOCK_WIDTH * ALPHA_STEPS); assert(pixman_image_get_height(buf->image) >= BLOCK_WIDTH); pixels = pixman_image_get_data(buf->image); stride_bytes = pixman_image_get_stride(buf->image); return pixels + y * stride_bytes; } static bool check_blend_pattern(struct buffer *bg, struct buffer *fg, struct buffer *shot, enum blend_space space) { uint32_t *bg_row = get_middle_row(bg); uint32_t *fg_row = get_middle_row(fg); uint32_t *shot_row = get_middle_row(shot); struct color_float max_diff = { 0.0f, 0.0f, 0.0f, 0.0f }; bool ret = true; int x; for (x = 0; x < BLOCK_WIDTH * ALPHA_STEPS - 1; x++) { if (!pixels_monotonic(shot_row, x)) ret = false; if (!verify_sRGB_blend_a8r8g8b8(bg_row[x], fg_row[x], shot_row[x], x, &max_diff, space)) ret = false; } testlog("%s max diff: r=%f, g=%f, b=%f\n", __func__, max_diff.r, max_diff.g, max_diff.b); return ret; } /* * Test that alpha blending is roughly correct, and that an alpha ramp * results in a strictly monotonic color ramp. This should ensure that any * animation that varies alpha never goes "backwards" as that is easily * noticeable. * * The background is a constant color. On top of that, there is an * alpha-blended gradient with ramps in both alpha and color. Sub-surface * ensures the correct positioning and stacking. * * The gradient consists of ALPHA_STEPS number of blocks. Block size is * BLOCK_WIDTH x BLOCK_WIDTH and a block has a uniform color. * * In the blending result over x axis: * - red goes from 1.0 to 0.0, monotonic * - green is not monotonic * - blue goes from 0.0 to 1.0, monotonic * * This test has two modes: BLEND_NONLINEAR and BLEND_LINEAR. * * BLEND_NONLINEAR does blending with pixel values as is, which are non-linear, * and therefore result in "physically incorrect" blending result. Yet, people * have accustomed to seeing this effect. This mode hits pipeline_premult() * in fragment.glsl. * * BLEND_LINEAR has sRGB encoded pixels (non-linear). These are converted to * linear light (optical) values, blended, and converted back to non-linear * (electrical) values. This results in "physically more correct" blending * result for some value of "physical". This mode hits pipeline_straight() * in fragment.glsl, and tests even more things: * - gl-renderer implementation of 1D LUT is correct * - color-lcms instantiates the correct sRGB EOTF and inverse LUTs * - color space conversions do not happen when both content and output are * using their default color spaces * - blending through gl-renderer shadow framebuffer */ TEST(alpha_blend) { const int width = BLOCK_WIDTH * ALPHA_STEPS; const int height = BLOCK_WIDTH; const pixman_color_t background_color = { .red = 0xffff, .green = 0x8080, .blue = 0x0000, .alpha = 0xffff }; const struct setup_args *args; struct client *client; struct buffer *bg; struct buffer *fg; struct wl_subcompositor *subco; struct wl_surface *surf; struct wl_subsurface *sub; struct buffer *shot; bool match; int seq_no; enum blend_space space; args = &my_setup_args[get_test_fixture_index()]; if (args->color_management) { seq_no = 1; space = BLEND_LINEAR; } else { seq_no = 0; space = BLEND_NONLINEAR; } client = create_client(); subco = bind_to_singleton_global(client, &wl_subcompositor_interface, 1); /* background window content */ bg = create_shm_buffer_a8r8g8b8(client, width, height); fill_image_with_color(bg->image, &background_color); /* background window, main surface */ client->surface = create_test_surface(client); client->surface->width = width; client->surface->height = height; client->surface->buffer = bg; /* pass ownership */ set_opaque_rect(client, client->surface, &(struct rectangle){ 0, 0, width, height }); /* foreground blended content */ fg = create_shm_buffer_a8r8g8b8(client, width, height); fill_alpha_pattern(fg); /* foreground window, sub-surface */ surf = wl_compositor_create_surface(client->wl_compositor); sub = wl_subcompositor_get_subsurface(subco, surf, client->surface->wl_surface); /* sub-surface defaults to position 0, 0, top-most, synchronized */ wl_surface_attach(surf, fg->proxy, 0, 0); wl_surface_damage(surf, 0, 0, width, height); wl_surface_commit(surf); /* attach, damage, commit background window */ move_client(client, 0, 0); shot = capture_screenshot_of_output(client); assert(shot); match = verify_image(shot, "alpha_blend", seq_no, NULL, seq_no); assert(check_blend_pattern(bg, fg, shot, space)); assert(match); buffer_destroy(shot); wl_subsurface_destroy(sub); wl_surface_destroy(surf); buffer_destroy(fg); wl_subcompositor_destroy(subco); client_destroy(client); /* destroys bg */ }