/* * Copyright © 2012 Intel Corporation * Copyright © 2015,2019 Collabora, Ltd. * Copyright © 2016 NVIDIA Corporation * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "linux-sync-file.h" #include "timeline.h" #include "gl-renderer.h" #include "gl-renderer-internal.h" #include "vertex-clipping.h" #include "linux-dmabuf.h" #include "linux-dmabuf-unstable-v1-server-protocol.h" #include "linux-explicit-synchronization.h" #include "pixel-formats.h" #include "shared/fd-util.h" #include "shared/helpers.h" #include "shared/platform.h" #include "shared/timespec-util.h" #include "shared/weston-egl-ext.h" #define GR_GL_VERSION(major, minor) \ (((uint32_t)(major) << 16) | (uint32_t)(minor)) #define GR_GL_VERSION_INVALID \ GR_GL_VERSION(0, 0) #define BUFFER_DAMAGE_COUNT 2 enum gl_border_status { BORDER_STATUS_CLEAN = 0, BORDER_TOP_DIRTY = 1 << GL_RENDERER_BORDER_TOP, BORDER_LEFT_DIRTY = 1 << GL_RENDERER_BORDER_LEFT, BORDER_RIGHT_DIRTY = 1 << GL_RENDERER_BORDER_RIGHT, BORDER_BOTTOM_DIRTY = 1 << GL_RENDERER_BORDER_BOTTOM, BORDER_ALL_DIRTY = 0xf, BORDER_SIZE_CHANGED = 0x10 }; struct gl_border_image { GLuint tex; int32_t width, height; int32_t tex_width; void *data; }; struct gl_output_state { EGLSurface egl_surface; pixman_region32_t buffer_damage[BUFFER_DAMAGE_COUNT]; int buffer_damage_index; enum gl_border_status border_damage[BUFFER_DAMAGE_COUNT]; struct gl_border_image borders[4]; enum gl_border_status border_status; struct weston_matrix output_matrix; EGLSyncKHR begin_render_sync, end_render_sync; /* struct timeline_render_point::link */ struct wl_list timeline_render_point_list; }; enum buffer_type { BUFFER_TYPE_NULL, BUFFER_TYPE_SOLID, /* internal solid color surfaces without a buffer */ BUFFER_TYPE_SHM, BUFFER_TYPE_EGL }; struct gl_renderer; struct egl_image { struct gl_renderer *renderer; EGLImageKHR image; int refcount; }; enum import_type { IMPORT_TYPE_INVALID, IMPORT_TYPE_DIRECT, IMPORT_TYPE_GL_CONVERSION }; struct dmabuf_image { struct linux_dmabuf_buffer *dmabuf; int num_images; struct egl_image *images[3]; struct wl_list link; enum import_type import_type; GLenum target; struct gl_shader *shader; }; struct dmabuf_format { uint32_t format; struct wl_list link; uint64_t *modifiers; unsigned *external_only; int num_modifiers; }; struct yuv_plane_descriptor { int width_divisor; int height_divisor; uint32_t format; int plane_index; }; enum texture_type { TEXTURE_Y_XUXV_WL, TEXTURE_Y_UV_WL, TEXTURE_Y_U_V_WL, TEXTURE_XYUV_WL }; struct yuv_format_descriptor { uint32_t format; int input_planes; int output_planes; enum texture_type texture_type; struct yuv_plane_descriptor plane[4]; }; struct gl_surface_state { GLfloat color[4]; struct gl_shader *shader; GLuint textures[3]; int num_textures; bool needs_full_upload; pixman_region32_t texture_damage; /* These are only used by SHM surfaces to detect when we need * to do a full upload to specify a new internal texture * format */ GLenum gl_format[3]; GLenum gl_pixel_type; struct egl_image* images[3]; GLenum target; int num_images; struct weston_buffer_reference buffer_ref; struct weston_buffer_release_reference buffer_release_ref; enum buffer_type buffer_type; int pitch; /* in pixels */ int height; /* in pixels */ bool y_inverted; bool direct_display; /* Extension needed for SHM YUV texture */ int offset[3]; /* offset per plane */ int hsub[3]; /* horizontal subsampling per plane */ int vsub[3]; /* vertical subsampling per plane */ struct weston_surface *surface; /* Whether this surface was used in the current output repaint. Used only in the context of a gl_renderer_repaint_output call. */ bool used_in_output_repaint; struct wl_listener surface_destroy_listener; struct wl_listener renderer_destroy_listener; }; enum timeline_render_point_type { TIMELINE_RENDER_POINT_TYPE_BEGIN, TIMELINE_RENDER_POINT_TYPE_END }; struct timeline_render_point { struct wl_list link; /* gl_output_state::timeline_render_point_list */ enum timeline_render_point_type type; int fd; struct weston_output *output; struct wl_event_source *event_source; }; static inline const char * dump_format(uint32_t format, char out[4]) { #if BYTE_ORDER == BIG_ENDIAN format = __builtin_bswap32(format); #endif memcpy(out, &format, 4); return out; } static inline struct gl_output_state * get_output_state(struct weston_output *output) { return (struct gl_output_state *)output->renderer_state; } static int gl_renderer_create_surface(struct weston_surface *surface); static inline struct gl_surface_state * get_surface_state(struct weston_surface *surface) { if (!surface->renderer_state) gl_renderer_create_surface(surface); return (struct gl_surface_state *)surface->renderer_state; } static void timeline_render_point_destroy(struct timeline_render_point *trp) { wl_list_remove(&trp->link); wl_event_source_remove(trp->event_source); close(trp->fd); free(trp); } static int timeline_render_point_handler(int fd, uint32_t mask, void *data) { struct timeline_render_point *trp = data; const char *tp_name = trp->type == TIMELINE_RENDER_POINT_TYPE_BEGIN ? "renderer_gpu_begin" : "renderer_gpu_end"; if (mask & WL_EVENT_READABLE) { struct timespec tspec = { 0 }; if (weston_linux_sync_file_read_timestamp(trp->fd, &tspec) == 0) { TL_POINT(trp->output->compositor, tp_name, TLP_GPU(&tspec), TLP_OUTPUT(trp->output), TLP_END); } } timeline_render_point_destroy(trp); return 0; } static EGLSyncKHR create_render_sync(struct gl_renderer *gr) { static const EGLint attribs[] = { EGL_NONE }; if (!gr->has_native_fence_sync) return EGL_NO_SYNC_KHR; return gr->create_sync(gr->egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); } static void timeline_submit_render_sync(struct gl_renderer *gr, struct weston_compositor *ec, struct weston_output *output, EGLSyncKHR sync, enum timeline_render_point_type type) { struct gl_output_state *go; struct wl_event_loop *loop; int fd; struct timeline_render_point *trp; if (!weston_log_scope_is_enabled(ec->timeline) || !gr->has_native_fence_sync || sync == EGL_NO_SYNC_KHR) return; go = get_output_state(output); loop = wl_display_get_event_loop(ec->wl_display); fd = gr->dup_native_fence_fd(gr->egl_display, sync); if (fd == EGL_NO_NATIVE_FENCE_FD_ANDROID) return; trp = zalloc(sizeof *trp); if (trp == NULL) { close(fd); return; } trp->type = type; trp->fd = fd; trp->output = output; trp->event_source = wl_event_loop_add_fd(loop, fd, WL_EVENT_READABLE, timeline_render_point_handler, trp); wl_list_insert(&go->timeline_render_point_list, &trp->link); } static struct egl_image* egl_image_create(struct gl_renderer *gr, EGLenum target, EGLClientBuffer buffer, const EGLint *attribs) { struct egl_image *img; img = zalloc(sizeof *img); img->renderer = gr; img->refcount = 1; img->image = gr->create_image(gr->egl_display, EGL_NO_CONTEXT, target, buffer, attribs); if (img->image == EGL_NO_IMAGE_KHR) { free(img); return NULL; } return img; } static struct egl_image* egl_image_ref(struct egl_image *image) { image->refcount++; return image; } static int egl_image_unref(struct egl_image *image) { struct gl_renderer *gr = image->renderer; assert(image->refcount > 0); image->refcount--; if (image->refcount > 0) return image->refcount; gr->destroy_image(gr->egl_display, image->image); free(image); return 0; } static struct dmabuf_image* dmabuf_image_create(void) { struct dmabuf_image *img; img = zalloc(sizeof *img); wl_list_init(&img->link); return img; } static void dmabuf_image_destroy(struct dmabuf_image *image) { int i; for (i = 0; i < image->num_images; ++i) egl_image_unref(image->images[i]); if (image->dmabuf) linux_dmabuf_buffer_set_user_data(image->dmabuf, NULL, NULL); wl_list_remove(&image->link); free(image); } #define max(a, b) (((a) > (b)) ? (a) : (b)) #define min(a, b) (((a) > (b)) ? (b) : (a)) /* * Compute the boundary vertices of the intersection of the global coordinate * aligned rectangle 'rect', and an arbitrary quadrilateral produced from * 'surf_rect' when transformed from surface coordinates into global coordinates. * The vertices are written to 'ex' and 'ey', and the return value is the * number of vertices. Vertices are produced in clockwise winding order. * Guarantees to produce either zero vertices, or 3-8 vertices with non-zero * polygon area. */ static int calculate_edges(struct weston_view *ev, pixman_box32_t *rect, pixman_box32_t *surf_rect, GLfloat *ex, GLfloat *ey) { struct clip_context ctx; int i, n; GLfloat min_x, max_x, min_y, max_y; struct polygon8 surf = { { surf_rect->x1, surf_rect->x2, surf_rect->x2, surf_rect->x1 }, { surf_rect->y1, surf_rect->y1, surf_rect->y2, surf_rect->y2 }, 4 }; ctx.clip.x1 = rect->x1; ctx.clip.y1 = rect->y1; ctx.clip.x2 = rect->x2; ctx.clip.y2 = rect->y2; /* transform surface to screen space: */ for (i = 0; i < surf.n; i++) weston_view_to_global_float(ev, surf.x[i], surf.y[i], &surf.x[i], &surf.y[i]); /* find bounding box: */ min_x = max_x = surf.x[0]; min_y = max_y = surf.y[0]; for (i = 1; i < surf.n; i++) { min_x = min(min_x, surf.x[i]); max_x = max(max_x, surf.x[i]); min_y = min(min_y, surf.y[i]); max_y = max(max_y, surf.y[i]); } /* First, simple bounding box check to discard early transformed * surface rects that do not intersect with the clip region: */ if ((min_x >= ctx.clip.x2) || (max_x <= ctx.clip.x1) || (min_y >= ctx.clip.y2) || (max_y <= ctx.clip.y1)) return 0; /* Simple case, bounding box edges are parallel to surface edges, * there will be only four edges. We just need to clip the surface * vertices to the clip rect bounds: */ if (!ev->transform.enabled) return clip_simple(&ctx, &surf, ex, ey); /* Transformed case: use a general polygon clipping algorithm to * clip the surface rectangle with each side of 'rect'. * The algorithm is Sutherland-Hodgman, as explained in * http://www.codeguru.com/cpp/misc/misc/graphics/article.php/c8965/Polygon-Clipping.htm * but without looking at any of that code. */ n = clip_transformed(&ctx, &surf, ex, ey); if (n < 3) return 0; return n; } static bool merge_down(pixman_box32_t *a, pixman_box32_t *b, pixman_box32_t *merge) { if (a->x1 == b->x1 && a->x2 == b->x2 && a->y1 == b->y2) { merge->x1 = a->x1; merge->x2 = a->x2; merge->y1 = b->y1; merge->y2 = a->y2; return true; } return false; } static int compress_bands(pixman_box32_t *inrects, int nrects, pixman_box32_t **outrects) { bool merged = false; pixman_box32_t *out, merge_rect; int i, j, nout; if (!nrects) { *outrects = NULL; return 0; } /* nrects is an upper bound - we're not too worried about * allocating a little extra */ out = malloc(sizeof(pixman_box32_t) * nrects); out[0] = inrects[0]; nout = 1; for (i = 1; i < nrects; i++) { for (j = 0; j < nout; j++) { merged = merge_down(&inrects[i], &out[j], &merge_rect); if (merged) { out[j] = merge_rect; break; } } if (!merged) { out[nout] = inrects[i]; nout++; } } *outrects = out; return nout; } static int texture_region(struct weston_view *ev, pixman_region32_t *region, pixman_region32_t *surf_region) { struct gl_surface_state *gs = get_surface_state(ev->surface); struct weston_compositor *ec = ev->surface->compositor; struct gl_renderer *gr = get_renderer(ec); GLfloat *v, inv_width, inv_height; unsigned int *vtxcnt, nvtx = 0; pixman_box32_t *rects, *surf_rects; pixman_box32_t *raw_rects; int i, j, k, nrects, nsurf, raw_nrects; bool used_band_compression; raw_rects = pixman_region32_rectangles(region, &raw_nrects); surf_rects = pixman_region32_rectangles(surf_region, &nsurf); if (raw_nrects < 4) { used_band_compression = false; nrects = raw_nrects; rects = raw_rects; } else { nrects = compress_bands(raw_rects, raw_nrects, &rects); used_band_compression = true; } /* worst case we can have 8 vertices per rect (ie. clipped into * an octagon): */ v = wl_array_add(&gr->vertices, nrects * nsurf * 8 * 4 * sizeof *v); vtxcnt = wl_array_add(&gr->vtxcnt, nrects * nsurf * sizeof *vtxcnt); inv_width = 1.0 / gs->pitch; inv_height = 1.0 / gs->height; for (i = 0; i < nrects; i++) { pixman_box32_t *rect = &rects[i]; for (j = 0; j < nsurf; j++) { pixman_box32_t *surf_rect = &surf_rects[j]; GLfloat sx, sy, bx, by; GLfloat ex[8], ey[8]; /* edge points in screen space */ int n; /* The transformed surface, after clipping to the clip region, * can have as many as eight sides, emitted as a triangle-fan. * The first vertex in the triangle fan can be chosen arbitrarily, * since the area is guaranteed to be convex. * * If a corner of the transformed surface falls outside of the * clip region, instead of emitting one vertex for the corner * of the surface, up to two are emitted for two corresponding * intersection point(s) between the surface and the clip region. * * To do this, we first calculate the (up to eight) points that * form the intersection of the clip rect and the transformed * surface. */ n = calculate_edges(ev, rect, surf_rect, ex, ey); if (n < 3) continue; /* emit edge points: */ for (k = 0; k < n; k++) { weston_view_from_global_float(ev, ex[k], ey[k], &sx, &sy); /* position: */ *(v++) = ex[k]; *(v++) = ey[k]; /* texcoord: */ weston_surface_to_buffer_float(ev->surface, sx, sy, &bx, &by); *(v++) = bx * inv_width; if (gs->y_inverted) { *(v++) = by * inv_height; } else { *(v++) = (gs->height - by) * inv_height; } } vtxcnt[nvtx++] = n; } } if (used_band_compression) free(rects); return nvtx; } static void triangle_fan_debug(struct weston_view *view, int first, int count) { struct weston_compositor *compositor = view->surface->compositor; struct gl_renderer *gr = get_renderer(compositor); int i; GLushort *buffer; GLushort *index; int nelems; static int color_idx = 0; static const GLfloat color[][4] = { { 1.0, 0.0, 0.0, 1.0 }, { 0.0, 1.0, 0.0, 1.0 }, { 0.0, 0.0, 1.0, 1.0 }, { 1.0, 1.0, 1.0, 1.0 }, }; nelems = (count - 1 + count - 2) * 2; buffer = malloc(sizeof(GLushort) * nelems); index = buffer; for (i = 1; i < count; i++) { *index++ = first; *index++ = first + i; } for (i = 2; i < count; i++) { *index++ = first + i - 1; *index++ = first + i; } glUseProgram(gr->solid_shader.program); glUniform4fv(gr->solid_shader.color_uniform, 1, color[color_idx++ % ARRAY_LENGTH(color)]); glDrawElements(GL_LINES, nelems, GL_UNSIGNED_SHORT, buffer); glUseProgram(gr->current_shader->program); free(buffer); } static void repaint_region(struct weston_view *ev, pixman_region32_t *region, pixman_region32_t *surf_region) { struct weston_compositor *ec = ev->surface->compositor; struct gl_renderer *gr = get_renderer(ec); GLfloat *v; unsigned int *vtxcnt; int i, first, nfans; /* The final region to be painted is the intersection of * 'region' and 'surf_region'. However, 'region' is in the global * coordinates, and 'surf_region' is in the surface-local * coordinates. texture_region() will iterate over all pairs of * rectangles from both regions, compute the intersection * polygon for each pair, and store it as a triangle fan if * it has a non-zero area (at least 3 vertices, actually). */ nfans = texture_region(ev, region, surf_region); v = gr->vertices.data; vtxcnt = gr->vtxcnt.data; /* position: */ glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[0]); glEnableVertexAttribArray(0); /* texcoord: */ glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[2]); glEnableVertexAttribArray(1); for (i = 0, first = 0; i < nfans; i++) { glDrawArrays(GL_TRIANGLE_FAN, first, vtxcnt[i]); if (gr->fan_debug) triangle_fan_debug(ev, first, vtxcnt[i]); first += vtxcnt[i]; } glDisableVertexAttribArray(1); glDisableVertexAttribArray(0); gr->vertices.size = 0; gr->vtxcnt.size = 0; } static int use_output(struct weston_output *output) { static int errored; struct gl_output_state *go = get_output_state(output); struct gl_renderer *gr = get_renderer(output->compositor); EGLBoolean ret; ret = eglMakeCurrent(gr->egl_display, go->egl_surface, go->egl_surface, gr->egl_context); if (ret == EGL_FALSE) { if (errored) return -1; errored = 1; weston_log("Failed to make EGL context current.\n"); gl_renderer_print_egl_error_state(); return -1; } return 0; } static int shader_init(struct gl_shader *shader, struct gl_renderer *gr, const char *vertex_source, const char *fragment_source); static void use_shader(struct gl_renderer *gr, struct gl_shader *shader) { if (!shader->program) { int ret; ret = shader_init(shader, gr, shader->vertex_source, shader->fragment_source); if (ret < 0) weston_log("warning: failed to compile shader\n"); } if (gr->current_shader == shader) return; glUseProgram(shader->program); gr->current_shader = shader; } static void shader_uniforms(struct gl_shader *shader, struct weston_view *view, struct weston_output *output) { int i; struct gl_surface_state *gs = get_surface_state(view->surface); struct gl_output_state *go = get_output_state(output); glUniformMatrix4fv(shader->proj_uniform, 1, GL_FALSE, go->output_matrix.d); glUniform4fv(shader->color_uniform, 1, gs->color); glUniform1f(shader->alpha_uniform, view->alpha); for (i = 0; i < gs->num_textures; i++) glUniform1i(shader->tex_uniforms[i], i); } static int ensure_surface_buffer_is_ready(struct gl_renderer *gr, struct gl_surface_state *gs) { EGLint attribs[] = { EGL_SYNC_NATIVE_FENCE_FD_ANDROID, -1, EGL_NONE }; struct weston_surface *surface = gs->surface; struct weston_buffer *buffer = gs->buffer_ref.buffer; EGLSyncKHR sync; EGLint wait_ret; EGLint destroy_ret; if (!buffer) return 0; if (surface->acquire_fence_fd < 0) return 0; /* We should only get a fence if we support EGLSyncKHR, since * we don't advertise the explicit sync protocol otherwise. */ assert(gr->has_native_fence_sync); /* We should only get a fence for non-SHM buffers, since surface * commit would have failed otherwise. */ assert(wl_shm_buffer_get(buffer->resource) == NULL); attribs[1] = dup(surface->acquire_fence_fd); if (attribs[1] == -1) { linux_explicit_synchronization_send_server_error( gs->surface->synchronization_resource, "Failed to dup acquire fence"); return -1; } sync = gr->create_sync(gr->egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); if (sync == EGL_NO_SYNC_KHR) { linux_explicit_synchronization_send_server_error( gs->surface->synchronization_resource, "Failed to create EGLSyncKHR object"); close(attribs[1]); return -1; } wait_ret = gr->wait_sync(gr->egl_display, sync, 0); if (wait_ret == EGL_FALSE) { linux_explicit_synchronization_send_server_error( gs->surface->synchronization_resource, "Failed to wait on EGLSyncKHR object"); /* Continue to try to destroy the sync object. */ } destroy_ret = gr->destroy_sync(gr->egl_display, sync); if (destroy_ret == EGL_FALSE) { linux_explicit_synchronization_send_server_error( gs->surface->synchronization_resource, "Failed to destroy on EGLSyncKHR object"); } return (wait_ret == EGL_TRUE && destroy_ret == EGL_TRUE) ? 0 : -1; } /* Checks if a view needs to be censored on an output * Checks for 2 types of censor requirements * - recording_censor: Censor protected view when a * protected view is captured. * - unprotected_censor: Censor regions of protected views * when displayed on an output which has lower protection capability. * Returns the originally stored gl_shader if content censoring is required, * NULL otherwise. */ static struct gl_shader * setup_censor_overrides(struct weston_output *output, struct weston_view *ev) { struct gl_shader *replaced_shader = NULL; struct weston_compositor *ec = ev->surface->compositor; struct gl_renderer *gr = get_renderer(ec); struct gl_surface_state *gs = get_surface_state(ev->surface); bool recording_censor = (output->disable_planes > 0) && (ev->surface->desired_protection > WESTON_HDCP_DISABLE); bool unprotected_censor = (ev->surface->desired_protection > output->current_protection); if (gs->direct_display) { gs->color[0] = 0.40; gs->color[1] = 0.0; gs->color[2] = 0.0; gs->color[3] = 1.0; gs->shader = &gr->solid_shader; return gs->shader; } /* When not in enforced mode, the client is notified of the protection */ /* change, so content censoring is not required */ if (ev->surface->protection_mode != WESTON_SURFACE_PROTECTION_MODE_ENFORCED) return NULL; if (recording_censor || unprotected_censor) { replaced_shader = gs->shader; gs->color[0] = 0.40; gs->color[1] = 0.0; gs->color[2] = 0.0; gs->color[3] = 1.0; gs->shader = &gr->solid_shader; } return replaced_shader; } static void draw_view(struct weston_view *ev, struct weston_output *output, pixman_region32_t *damage) /* in global coordinates */ { struct weston_compositor *ec = ev->surface->compositor; struct gl_renderer *gr = get_renderer(ec); struct gl_surface_state *gs = get_surface_state(ev->surface); /* repaint bounding region in global coordinates: */ pixman_region32_t repaint; /* opaque region in surface coordinates: */ pixman_region32_t surface_opaque; /* non-opaque region in surface coordinates: */ pixman_region32_t surface_blend; GLint filter; int i; struct gl_shader *replaced_shader = NULL; /* In case of a runtime switch of renderers, we may not have received * an attach for this surface since the switch. In that case we don't * have a valid buffer or a proper shader set up so skip rendering. */ if (!gs->shader && !gs->direct_display) return; pixman_region32_init(&repaint); pixman_region32_intersect(&repaint, &ev->transform.boundingbox, damage); pixman_region32_subtract(&repaint, &repaint, &ev->clip); if (!pixman_region32_not_empty(&repaint)) goto out; if (ensure_surface_buffer_is_ready(gr, gs) < 0) goto out; replaced_shader = setup_censor_overrides(output, ev); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); if (gr->fan_debug) { use_shader(gr, &gr->solid_shader); shader_uniforms(&gr->solid_shader, ev, output); } use_shader(gr, gs->shader); shader_uniforms(gs->shader, ev, output); if (ev->transform.enabled || output->zoom.active || output->current_scale != ev->surface->buffer_viewport.buffer.scale) filter = GL_LINEAR; else filter = GL_NEAREST; for (i = 0; i < gs->num_textures; i++) { glActiveTexture(GL_TEXTURE0 + i); glBindTexture(gs->target, gs->textures[i]); glTexParameteri(gs->target, GL_TEXTURE_MIN_FILTER, filter); glTexParameteri(gs->target, GL_TEXTURE_MAG_FILTER, filter); } /* blended region is whole surface minus opaque region: */ pixman_region32_init_rect(&surface_blend, 0, 0, ev->surface->width, ev->surface->height); if (ev->geometry.scissor_enabled) pixman_region32_intersect(&surface_blend, &surface_blend, &ev->geometry.scissor); pixman_region32_subtract(&surface_blend, &surface_blend, &ev->surface->opaque); /* XXX: Should we be using ev->transform.opaque here? */ pixman_region32_init(&surface_opaque); if (ev->geometry.scissor_enabled) pixman_region32_intersect(&surface_opaque, &ev->surface->opaque, &ev->geometry.scissor); else pixman_region32_copy(&surface_opaque, &ev->surface->opaque); if (pixman_region32_not_empty(&surface_opaque)) { if (gs->shader == &gr->texture_shader_rgba) { /* Special case for RGBA textures with possibly * bad data in alpha channel: use the shader * that forces texture alpha = 1.0. * Xwayland surfaces need this. */ use_shader(gr, &gr->texture_shader_rgbx); shader_uniforms(&gr->texture_shader_rgbx, ev, output); } if (ev->alpha < 1.0) glEnable(GL_BLEND); else glDisable(GL_BLEND); repaint_region(ev, &repaint, &surface_opaque); gs->used_in_output_repaint = true; } if (pixman_region32_not_empty(&surface_blend)) { use_shader(gr, gs->shader); glEnable(GL_BLEND); repaint_region(ev, &repaint, &surface_blend); gs->used_in_output_repaint = true; } pixman_region32_fini(&surface_blend); pixman_region32_fini(&surface_opaque); out: pixman_region32_fini(&repaint); if (replaced_shader) gs->shader = replaced_shader; } static void repaint_views(struct weston_output *output, pixman_region32_t *damage) { struct weston_compositor *compositor = output->compositor; struct weston_view *view; wl_list_for_each_reverse(view, &compositor->view_list, link) if (view->plane == &compositor->primary_plane) draw_view(view, output, damage); } static int gl_renderer_create_fence_fd(struct weston_output *output); /* Updates the release fences of surfaces that were used in the current output * repaint. Should only be used from gl_renderer_repaint_output, so that the * information in gl_surface_state.used_in_output_repaint is accurate. */ static void update_buffer_release_fences(struct weston_compositor *compositor, struct weston_output *output) { struct weston_view *view; wl_list_for_each_reverse(view, &compositor->view_list, link) { struct gl_surface_state *gs; struct weston_buffer_release *buffer_release; int fence_fd; if (view->plane != &compositor->primary_plane) continue; gs = get_surface_state(view->surface); buffer_release = gs->buffer_release_ref.buffer_release; if (!gs->used_in_output_repaint || !buffer_release) continue; fence_fd = gl_renderer_create_fence_fd(output); /* If we have a buffer_release then it means we support fences, * and we should be able to create the release fence. If we * can't, something has gone horribly wrong, so disconnect the * client. */ if (fence_fd == -1) { linux_explicit_synchronization_send_server_error( buffer_release->resource, "Failed to create release fence"); fd_clear(&buffer_release->fence_fd); continue; } /* At the moment it is safe to just replace the fence_fd, * discarding the previous one: * * 1. If the previous fence fd represents a sync fence from * a previous repaint cycle, that fence fd is now not * sufficient to provide the release guarantee and should * be replaced. * * 2. If the fence fd represents a sync fence from another * output in the same repaint cycle, it's fine to replace * it since we are rendering to all outputs using the same * EGL context, so a fence issued for a later output rendering * is guaranteed to signal after fences for previous output * renderings. * * Note that the above is only valid if the buffer_release * fences only originate from the GL renderer, which guarantees * a total order of operations and fences. If we introduce * fences from other sources (e.g., plane out-fences), we will * need to merge fences instead. */ fd_update(&buffer_release->fence_fd, fence_fd); } } static void draw_output_border_texture(struct gl_output_state *go, enum gl_renderer_border_side side, int32_t x, int32_t y, int32_t width, int32_t height) { struct gl_border_image *img = &go->borders[side]; static GLushort indices [] = { 0, 1, 3, 3, 1, 2 }; if (!img->data) { if (img->tex) { glDeleteTextures(1, &img->tex); img->tex = 0; } return; } if (!img->tex) { glGenTextures(1, &img->tex); glBindTexture(GL_TEXTURE_2D, img->tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } else { glBindTexture(GL_TEXTURE_2D, img->tex); } if (go->border_status & (1 << side)) { glPixelStorei(GL_UNPACK_ROW_LENGTH_EXT, 0); glPixelStorei(GL_UNPACK_SKIP_PIXELS_EXT, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS_EXT, 0); glTexImage2D(GL_TEXTURE_2D, 0, GL_BGRA_EXT, img->tex_width, img->height, 0, GL_BGRA_EXT, GL_UNSIGNED_BYTE, img->data); } GLfloat texcoord[] = { 0.0f, 0.0f, (GLfloat)img->width / (GLfloat)img->tex_width, 0.0f, (GLfloat)img->width / (GLfloat)img->tex_width, 1.0f, 0.0f, 1.0f, }; GLfloat verts[] = { x, y, x + width, y, x + width, y + height, x, y + height }; glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, verts); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, texcoord); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, indices); glDisableVertexAttribArray(1); glDisableVertexAttribArray(0); } static int output_has_borders(struct weston_output *output) { struct gl_output_state *go = get_output_state(output); return go->borders[GL_RENDERER_BORDER_TOP].data || go->borders[GL_RENDERER_BORDER_RIGHT].data || go->borders[GL_RENDERER_BORDER_BOTTOM].data || go->borders[GL_RENDERER_BORDER_LEFT].data; } static void draw_output_borders(struct weston_output *output, enum gl_border_status border_status) { struct gl_output_state *go = get_output_state(output); struct gl_renderer *gr = get_renderer(output->compositor); struct gl_shader *shader = &gr->texture_shader_rgba; struct gl_border_image *top, *bottom, *left, *right; struct weston_matrix matrix; int full_width, full_height; if (border_status == BORDER_STATUS_CLEAN) return; /* Clean. Nothing to do. */ top = &go->borders[GL_RENDERER_BORDER_TOP]; bottom = &go->borders[GL_RENDERER_BORDER_BOTTOM]; left = &go->borders[GL_RENDERER_BORDER_LEFT]; right = &go->borders[GL_RENDERER_BORDER_RIGHT]; full_width = output->current_mode->width + left->width + right->width; full_height = output->current_mode->height + top->height + bottom->height; glDisable(GL_BLEND); use_shader(gr, shader); glViewport(0, 0, full_width, full_height); weston_matrix_init(&matrix); weston_matrix_translate(&matrix, -full_width/2.0, -full_height/2.0, 0); weston_matrix_scale(&matrix, 2.0/full_width, -2.0/full_height, 1); glUniformMatrix4fv(shader->proj_uniform, 1, GL_FALSE, matrix.d); glUniform1i(shader->tex_uniforms[0], 0); glUniform1f(shader->alpha_uniform, 1); glActiveTexture(GL_TEXTURE0); if (border_status & BORDER_TOP_DIRTY) draw_output_border_texture(go, GL_RENDERER_BORDER_TOP, 0, 0, full_width, top->height); if (border_status & BORDER_LEFT_DIRTY) draw_output_border_texture(go, GL_RENDERER_BORDER_LEFT, 0, top->height, left->width, output->current_mode->height); if (border_status & BORDER_RIGHT_DIRTY) draw_output_border_texture(go, GL_RENDERER_BORDER_RIGHT, full_width - right->width, top->height, right->width, output->current_mode->height); if (border_status & BORDER_BOTTOM_DIRTY) draw_output_border_texture(go, GL_RENDERER_BORDER_BOTTOM, 0, full_height - bottom->height, full_width, bottom->height); } static void output_get_border_damage(struct weston_output *output, enum gl_border_status border_status, pixman_region32_t *damage) { struct gl_output_state *go = get_output_state(output); struct gl_border_image *top, *bottom, *left, *right; int full_width, full_height; if (border_status == BORDER_STATUS_CLEAN) return; /* Clean. Nothing to do. */ top = &go->borders[GL_RENDERER_BORDER_TOP]; bottom = &go->borders[GL_RENDERER_BORDER_BOTTOM]; left = &go->borders[GL_RENDERER_BORDER_LEFT]; right = &go->borders[GL_RENDERER_BORDER_RIGHT]; full_width = output->current_mode->width + left->width + right->width; full_height = output->current_mode->height + top->height + bottom->height; if (border_status & BORDER_TOP_DIRTY) pixman_region32_union_rect(damage, damage, 0, 0, full_width, top->height); if (border_status & BORDER_LEFT_DIRTY) pixman_region32_union_rect(damage, damage, 0, top->height, left->width, output->current_mode->height); if (border_status & BORDER_RIGHT_DIRTY) pixman_region32_union_rect(damage, damage, full_width - right->width, top->height, right->width, output->current_mode->height); if (border_status & BORDER_BOTTOM_DIRTY) pixman_region32_union_rect(damage, damage, 0, full_height - bottom->height, full_width, bottom->height); } static void output_get_damage(struct weston_output *output, pixman_region32_t *buffer_damage, uint32_t *border_damage) { struct gl_output_state *go = get_output_state(output); struct gl_renderer *gr = get_renderer(output->compositor); EGLint buffer_age = 0; EGLBoolean ret; int i; if (gr->has_egl_buffer_age) { ret = eglQuerySurface(gr->egl_display, go->egl_surface, EGL_BUFFER_AGE_EXT, &buffer_age); if (ret == EGL_FALSE) { weston_log("buffer age query failed.\n"); gl_renderer_print_egl_error_state(); } } if (buffer_age == 0 || buffer_age - 1 > BUFFER_DAMAGE_COUNT) { pixman_region32_copy(buffer_damage, &output->region); *border_damage = BORDER_ALL_DIRTY; } else { for (i = 0; i < buffer_age - 1; i++) *border_damage |= go->border_damage[(go->buffer_damage_index + i) % BUFFER_DAMAGE_COUNT]; if (*border_damage & BORDER_SIZE_CHANGED) { /* If we've had a resize, we have to do a full * repaint. */ *border_damage |= BORDER_ALL_DIRTY; pixman_region32_copy(buffer_damage, &output->region); } else { for (i = 0; i < buffer_age - 1; i++) pixman_region32_union(buffer_damage, buffer_damage, &go->buffer_damage[(go->buffer_damage_index + i) % BUFFER_DAMAGE_COUNT]); } } } static void output_rotate_damage(struct weston_output *output, pixman_region32_t *output_damage, enum gl_border_status border_status) { struct gl_output_state *go = get_output_state(output); struct gl_renderer *gr = get_renderer(output->compositor); if (!gr->has_egl_buffer_age) return; go->buffer_damage_index += BUFFER_DAMAGE_COUNT - 1; go->buffer_damage_index %= BUFFER_DAMAGE_COUNT; pixman_region32_copy(&go->buffer_damage[go->buffer_damage_index], output_damage); go->border_damage[go->buffer_damage_index] = border_status; } /** * Given a region in Weston's (top-left-origin) global co-ordinate space, * translate it to the co-ordinate space used by GL for our output * rendering. This requires shifting it into output co-ordinate space: * translating for output offset within the global co-ordinate space, * multiplying by output scale to get buffer rather than logical size. * * Finally, if borders are drawn around the output, we translate the area * to account for the border region around the outside, and add any * damage if the borders have been redrawn. * * @param output The output whose co-ordinate space we are after * @param global_region The affected region in global co-ordinate space * @param[out] rects Y-inverted quads in {x,y,w,h} order; caller must free * @param[out] nrects Number of quads (4x number of co-ordinates) */ static void pixman_region_to_egl_y_invert(struct weston_output *output, struct pixman_region32 *global_region, EGLint **rects, EGLint *nrects) { struct gl_output_state *go = get_output_state(output); pixman_region32_t transformed; struct pixman_box32 *box; int buffer_height; EGLint *d; int i; /* Translate from global to output co-ordinate space. */ pixman_region32_init(&transformed); pixman_region32_copy(&transformed, global_region); pixman_region32_translate(&transformed, -output->x, -output->y); weston_transformed_region(output->width, output->height, output->transform, output->current_scale, &transformed, &transformed); /* If we have borders drawn around the output, shift our output damage * to account for borders being drawn around the outside, adding any * damage resulting from borders being redrawn. */ if (output_has_borders(output)) { pixman_region32_translate(&transformed, go->borders[GL_RENDERER_BORDER_LEFT].width, go->borders[GL_RENDERER_BORDER_TOP].height); output_get_border_damage(output, go->border_status, &transformed); } /* Convert from a Pixman region into {x,y,w,h} quads, flipping in the * Y axis to account for GL's lower-left-origin co-ordinate space. */ box = pixman_region32_rectangles(&transformed, nrects); *rects = malloc(*nrects * 4 * sizeof(EGLint)); buffer_height = go->borders[GL_RENDERER_BORDER_TOP].height + output->current_mode->height + go->borders[GL_RENDERER_BORDER_BOTTOM].height; d = *rects; for (i = 0; i < *nrects; ++i) { *d++ = box[i].x1; *d++ = buffer_height - box[i].y2; *d++ = box[i].x2 - box[i].x1; *d++ = box[i].y2 - box[i].y1; } pixman_region32_fini(&transformed); } /* NOTE: We now allow falling back to ARGB gl visuals when XRGB is * unavailable, so we're assuming the background has no transparency * and that everything with a blend, like drop shadows, will have something * opaque (like the background) drawn underneath it. * * Depending on the underlying hardware, violating that assumption could * result in seeing through to another display plane. */ static void gl_renderer_repaint_output(struct weston_output *output, pixman_region32_t *output_damage) { struct gl_output_state *go = get_output_state(output); struct weston_compositor *compositor = output->compositor; struct gl_renderer *gr = get_renderer(compositor); EGLBoolean ret; static int errored; /* areas we've damaged since we last used this buffer */ pixman_region32_t previous_damage; /* total area we need to repaint this time */ pixman_region32_t total_damage; enum gl_border_status border_status = BORDER_STATUS_CLEAN; struct weston_view *view; if (use_output(output) < 0) return; /* Clear the used_in_output_repaint flag, so that we can properly track * which surfaces were used in this output repaint. */ wl_list_for_each_reverse(view, &compositor->view_list, link) { if (view->plane == &compositor->primary_plane) { struct gl_surface_state *gs = get_surface_state(view->surface); gs->used_in_output_repaint = false; } } if (go->begin_render_sync != EGL_NO_SYNC_KHR) gr->destroy_sync(gr->egl_display, go->begin_render_sync); if (go->end_render_sync != EGL_NO_SYNC_KHR) gr->destroy_sync(gr->egl_display, go->end_render_sync); go->begin_render_sync = create_render_sync(gr); /* Calculate the viewport */ glViewport(go->borders[GL_RENDERER_BORDER_LEFT].width, go->borders[GL_RENDERER_BORDER_BOTTOM].height, output->current_mode->width, output->current_mode->height); /* Calculate the global GL matrix */ go->output_matrix = output->matrix; weston_matrix_translate(&go->output_matrix, -(output->current_mode->width / 2.0), -(output->current_mode->height / 2.0), 0); weston_matrix_scale(&go->output_matrix, 2.0 / output->current_mode->width, -2.0 / output->current_mode->height, 1); /* In fan debug mode, redraw everything to make sure that we clear any * fans left over from previous draws on this buffer. * This precludes the use of EGL_EXT_swap_buffers_with_damage and * EGL_KHR_partial_update, since we damage the whole area. */ if (gr->fan_debug) { pixman_region32_t undamaged; pixman_region32_init(&undamaged); pixman_region32_subtract(&undamaged, &output->region, output_damage); gr->fan_debug = false; repaint_views(output, &undamaged); gr->fan_debug = true; pixman_region32_fini(&undamaged); } /* previous_damage covers regions damaged in previous paints since we * last used this buffer */ pixman_region32_init(&previous_damage); pixman_region32_init(&total_damage); /* total area to redraw */ /* Update previous_damage using buffer_age (if available), and store * current damaged region for future use. */ output_get_damage(output, &previous_damage, &border_status); output_rotate_damage(output, output_damage, go->border_status); /* Redraw both areas which have changed since we last used this buffer, * as well as the areas we now want to repaint, to make sure the * buffer is up to date. */ pixman_region32_union(&total_damage, &previous_damage, output_damage); border_status |= go->border_status; if (gr->has_egl_partial_update && !gr->fan_debug) { int n_egl_rects; EGLint *egl_rects; /* For partial_update, we need to pass the region which has * changed since we last rendered into this specific buffer; * this is total_damage. */ pixman_region_to_egl_y_invert(output, &total_damage, &egl_rects, &n_egl_rects); gr->set_damage_region(gr->egl_display, go->egl_surface, egl_rects, n_egl_rects); free(egl_rects); } repaint_views(output, &total_damage); pixman_region32_fini(&total_damage); pixman_region32_fini(&previous_damage); draw_output_borders(output, border_status); wl_signal_emit(&output->frame_signal, output_damage); go->end_render_sync = create_render_sync(gr); if (gr->swap_buffers_with_damage && !gr->fan_debug) { int n_egl_rects; EGLint *egl_rects; /* For swap_buffers_with_damage, we need to pass the region * which has changed since the previous SwapBuffers on this * surface - this is output_damage. */ pixman_region_to_egl_y_invert(output, output_damage, &egl_rects, &n_egl_rects); ret = gr->swap_buffers_with_damage(gr->egl_display, go->egl_surface, egl_rects, n_egl_rects); free(egl_rects); } else { ret = eglSwapBuffers(gr->egl_display, go->egl_surface); } if (ret == EGL_FALSE && !errored) { errored = 1; weston_log("Failed in eglSwapBuffers.\n"); gl_renderer_print_egl_error_state(); } go->border_status = BORDER_STATUS_CLEAN; /* We have to submit the render sync objects after swap buffers, since * the objects get assigned a valid sync file fd only after a gl flush. */ timeline_submit_render_sync(gr, compositor, output, go->begin_render_sync, TIMELINE_RENDER_POINT_TYPE_BEGIN); timeline_submit_render_sync(gr, compositor, output, go->end_render_sync, TIMELINE_RENDER_POINT_TYPE_END); update_buffer_release_fences(compositor, output); } static int gl_renderer_read_pixels(struct weston_output *output, pixman_format_code_t format, void *pixels, uint32_t x, uint32_t y, uint32_t width, uint32_t height) { GLenum gl_format; struct gl_output_state *go = get_output_state(output); x += go->borders[GL_RENDERER_BORDER_LEFT].width; y += go->borders[GL_RENDERER_BORDER_BOTTOM].height; switch (format) { case PIXMAN_a8r8g8b8: gl_format = GL_BGRA_EXT; break; case PIXMAN_a8b8g8r8: gl_format = GL_RGBA; break; default: return -1; } if (use_output(output) < 0) return -1; glPixelStorei(GL_PACK_ALIGNMENT, 1); glReadPixels(x, y, width, height, gl_format, GL_UNSIGNED_BYTE, pixels); return 0; } static GLenum gl_format_from_internal(GLenum internal_format) { switch (internal_format) { case GL_R8_EXT: return GL_RED_EXT; case GL_RG8_EXT: return GL_RG_EXT; default: return internal_format; } } static void gl_renderer_flush_damage(struct weston_surface *surface) { struct gl_renderer *gr = get_renderer(surface->compositor); struct gl_surface_state *gs = get_surface_state(surface); struct weston_buffer *buffer = gs->buffer_ref.buffer; struct weston_view *view; bool texture_used; pixman_box32_t *rectangles; uint8_t *data; int i, j, n; pixman_region32_union(&gs->texture_damage, &gs->texture_damage, &surface->damage); if (!buffer) return; /* Avoid upload, if the texture won't be used this time. * We still accumulate the damage in texture_damage, and * hold the reference to the buffer, in case the surface * migrates back to the primary plane. */ texture_used = false; wl_list_for_each(view, &surface->views, surface_link) { if (view->plane == &surface->compositor->primary_plane) { texture_used = true; break; } } if (!texture_used) return; if (!pixman_region32_not_empty(&gs->texture_damage) && !gs->needs_full_upload) goto done; data = wl_shm_buffer_get_data(buffer->shm_buffer); if (!gr->has_unpack_subimage) { wl_shm_buffer_begin_access(buffer->shm_buffer); for (j = 0; j < gs->num_textures; j++) { glBindTexture(GL_TEXTURE_2D, gs->textures[j]); glTexImage2D(GL_TEXTURE_2D, 0, gs->gl_format[j], gs->pitch / gs->hsub[j], buffer->height / gs->vsub[j], 0, gl_format_from_internal(gs->gl_format[j]), gs->gl_pixel_type, data + gs->offset[j]); } wl_shm_buffer_end_access(buffer->shm_buffer); goto done; } if (gs->needs_full_upload) { glPixelStorei(GL_UNPACK_SKIP_PIXELS_EXT, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS_EXT, 0); wl_shm_buffer_begin_access(buffer->shm_buffer); for (j = 0; j < gs->num_textures; j++) { glBindTexture(GL_TEXTURE_2D, gs->textures[j]); glPixelStorei(GL_UNPACK_ROW_LENGTH_EXT, gs->pitch / gs->hsub[j]); glTexImage2D(GL_TEXTURE_2D, 0, gs->gl_format[j], gs->pitch / gs->hsub[j], buffer->height / gs->vsub[j], 0, gl_format_from_internal(gs->gl_format[j]), gs->gl_pixel_type, data + gs->offset[j]); } wl_shm_buffer_end_access(buffer->shm_buffer); goto done; } rectangles = pixman_region32_rectangles(&gs->texture_damage, &n); wl_shm_buffer_begin_access(buffer->shm_buffer); for (i = 0; i < n; i++) { pixman_box32_t r; r = weston_surface_to_buffer_rect(surface, rectangles[i]); for (j = 0; j < gs->num_textures; j++) { glBindTexture(GL_TEXTURE_2D, gs->textures[j]); glPixelStorei(GL_UNPACK_ROW_LENGTH_EXT, gs->pitch / gs->hsub[j]); glPixelStorei(GL_UNPACK_SKIP_PIXELS_EXT, r.x1 / gs->hsub[j]); glPixelStorei(GL_UNPACK_SKIP_ROWS_EXT, r.y1 / gs->hsub[j]); glTexSubImage2D(GL_TEXTURE_2D, 0, r.x1 / gs->hsub[j], r.y1 / gs->vsub[j], (r.x2 - r.x1) / gs->hsub[j], (r.y2 - r.y1) / gs->vsub[j], gl_format_from_internal(gs->gl_format[j]), gs->gl_pixel_type, data + gs->offset[j]); } } wl_shm_buffer_end_access(buffer->shm_buffer); done: pixman_region32_fini(&gs->texture_damage); pixman_region32_init(&gs->texture_damage); gs->needs_full_upload = false; weston_buffer_reference(&gs->buffer_ref, NULL); weston_buffer_release_reference(&gs->buffer_release_ref, NULL); } static void ensure_textures(struct gl_surface_state *gs, int num_textures) { int i; if (num_textures <= gs->num_textures) return; for (i = gs->num_textures; i < num_textures; i++) { glGenTextures(1, &gs->textures[i]); glBindTexture(gs->target, gs->textures[i]); glTexParameteri(gs->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(gs->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } gs->num_textures = num_textures; glBindTexture(gs->target, 0); } static void gl_renderer_attach_shm(struct weston_surface *es, struct weston_buffer *buffer, struct wl_shm_buffer *shm_buffer) { struct weston_compositor *ec = es->compositor; struct gl_renderer *gr = get_renderer(ec); struct gl_surface_state *gs = get_surface_state(es); GLenum gl_format[3] = {0, 0, 0}; GLenum gl_pixel_type; int pitch; int num_planes; buffer->shm_buffer = shm_buffer; buffer->width = wl_shm_buffer_get_width(shm_buffer); buffer->height = wl_shm_buffer_get_height(shm_buffer); num_planes = 1; gs->offset[0] = 0; gs->hsub[0] = 1; gs->vsub[0] = 1; switch (wl_shm_buffer_get_format(shm_buffer)) { case WL_SHM_FORMAT_XRGB8888: gs->shader = &gr->texture_shader_rgbx; pitch = wl_shm_buffer_get_stride(shm_buffer) / 4; gl_format[0] = GL_BGRA_EXT; gl_pixel_type = GL_UNSIGNED_BYTE; es->is_opaque = true; break; case WL_SHM_FORMAT_ARGB8888: gs->shader = &gr->texture_shader_rgba; pitch = wl_shm_buffer_get_stride(shm_buffer) / 4; gl_format[0] = GL_BGRA_EXT; gl_pixel_type = GL_UNSIGNED_BYTE; es->is_opaque = false; break; case WL_SHM_FORMAT_RGB565: gs->shader = &gr->texture_shader_rgbx; pitch = wl_shm_buffer_get_stride(shm_buffer) / 2; gl_format[0] = GL_RGB; gl_pixel_type = GL_UNSIGNED_SHORT_5_6_5; es->is_opaque = true; break; case WL_SHM_FORMAT_YUV420: gs->shader = &gr->texture_shader_y_u_v; pitch = wl_shm_buffer_get_stride(shm_buffer); gl_pixel_type = GL_UNSIGNED_BYTE; num_planes = 3; gs->offset[1] = gs->offset[0] + (pitch / gs->hsub[0]) * (buffer->height / gs->vsub[0]); gs->hsub[1] = 2; gs->vsub[1] = 2; gs->offset[2] = gs->offset[1] + (pitch / gs->hsub[1]) * (buffer->height / gs->vsub[1]); gs->hsub[2] = 2; gs->vsub[2] = 2; if (gr->has_gl_texture_rg) { gl_format[0] = GL_R8_EXT; gl_format[1] = GL_R8_EXT; gl_format[2] = GL_R8_EXT; } else { gl_format[0] = GL_LUMINANCE; gl_format[1] = GL_LUMINANCE; gl_format[2] = GL_LUMINANCE; } es->is_opaque = true; break; case WL_SHM_FORMAT_NV12: pitch = wl_shm_buffer_get_stride(shm_buffer); gl_pixel_type = GL_UNSIGNED_BYTE; num_planes = 2; gs->offset[1] = gs->offset[0] + (pitch / gs->hsub[0]) * (buffer->height / gs->vsub[0]); gs->hsub[1] = 2; gs->vsub[1] = 2; if (gr->has_gl_texture_rg) { gs->shader = &gr->texture_shader_y_uv; gl_format[0] = GL_R8_EXT; gl_format[1] = GL_RG8_EXT; } else { gs->shader = &gr->texture_shader_y_xuxv; gl_format[0] = GL_LUMINANCE; gl_format[1] = GL_LUMINANCE_ALPHA; } es->is_opaque = true; break; case WL_SHM_FORMAT_YUYV: gs->shader = &gr->texture_shader_y_xuxv; pitch = wl_shm_buffer_get_stride(shm_buffer) / 2; gl_pixel_type = GL_UNSIGNED_BYTE; num_planes = 2; gs->offset[1] = 0; gs->hsub[1] = 2; gs->vsub[1] = 1; if (gr->has_gl_texture_rg) gl_format[0] = GL_RG8_EXT; else gl_format[0] = GL_LUMINANCE_ALPHA; gl_format[1] = GL_BGRA_EXT; es->is_opaque = true; break; default: weston_log("warning: unknown shm buffer format: %08x\n", wl_shm_buffer_get_format(shm_buffer)); return; } /* Only allocate a texture if it doesn't match existing one. * If a switch from DRM allocated buffer to a SHM buffer is * happening, we need to allocate a new texture buffer. */ if (pitch != gs->pitch || buffer->height != gs->height || gl_format[0] != gs->gl_format[0] || gl_format[1] != gs->gl_format[1] || gl_format[2] != gs->gl_format[2] || gl_pixel_type != gs->gl_pixel_type || gs->buffer_type != BUFFER_TYPE_SHM) { gs->pitch = pitch; gs->height = buffer->height; gs->target = GL_TEXTURE_2D; gs->gl_format[0] = gl_format[0]; gs->gl_format[1] = gl_format[1]; gs->gl_format[2] = gl_format[2]; gs->gl_pixel_type = gl_pixel_type; gs->buffer_type = BUFFER_TYPE_SHM; gs->needs_full_upload = true; gs->y_inverted = true; gs->direct_display = false; gs->surface = es; ensure_textures(gs, num_planes); } } static void gl_renderer_attach_egl(struct weston_surface *es, struct weston_buffer *buffer, uint32_t format) { struct weston_compositor *ec = es->compositor; struct gl_renderer *gr = get_renderer(ec); struct gl_surface_state *gs = get_surface_state(es); EGLint attribs[3]; int i, num_planes; buffer->legacy_buffer = (struct wl_buffer *)buffer->resource; gr->query_buffer(gr->egl_display, buffer->legacy_buffer, EGL_WIDTH, &buffer->width); gr->query_buffer(gr->egl_display, buffer->legacy_buffer, EGL_HEIGHT, &buffer->height); gr->query_buffer(gr->egl_display, buffer->legacy_buffer, EGL_WAYLAND_Y_INVERTED_WL, &buffer->y_inverted); for (i = 0; i < gs->num_images; i++) { egl_image_unref(gs->images[i]); gs->images[i] = NULL; } gs->num_images = 0; gs->target = GL_TEXTURE_2D; es->is_opaque = false; switch (format) { case EGL_TEXTURE_RGB: es->is_opaque = true; /* fallthrough */ case EGL_TEXTURE_RGBA: default: num_planes = 1; gs->shader = &gr->texture_shader_rgba; break; case EGL_TEXTURE_EXTERNAL_WL: num_planes = 1; gs->target = GL_TEXTURE_EXTERNAL_OES; gs->shader = &gr->texture_shader_egl_external; break; case EGL_TEXTURE_Y_UV_WL: num_planes = 2; gs->shader = &gr->texture_shader_y_uv; es->is_opaque = true; break; case EGL_TEXTURE_Y_U_V_WL: num_planes = 3; gs->shader = &gr->texture_shader_y_u_v; es->is_opaque = true; break; case EGL_TEXTURE_Y_XUXV_WL: num_planes = 2; gs->shader = &gr->texture_shader_y_xuxv; es->is_opaque = true; break; } ensure_textures(gs, num_planes); for (i = 0; i < num_planes; i++) { attribs[0] = EGL_WAYLAND_PLANE_WL; attribs[1] = i; attribs[2] = EGL_NONE; gs->images[i] = egl_image_create(gr, EGL_WAYLAND_BUFFER_WL, buffer->legacy_buffer, attribs); if (!gs->images[i]) { weston_log("failed to create img for plane %d\n", i); continue; } gs->num_images++; glActiveTexture(GL_TEXTURE0 + i); glBindTexture(gs->target, gs->textures[i]); gr->image_target_texture_2d(gs->target, gs->images[i]->image); } gs->pitch = buffer->width; gs->height = buffer->height; gs->buffer_type = BUFFER_TYPE_EGL; gs->y_inverted = buffer->y_inverted; } static void gl_renderer_destroy_dmabuf(struct linux_dmabuf_buffer *dmabuf) { struct dmabuf_image *image = linux_dmabuf_buffer_get_user_data(dmabuf); dmabuf_image_destroy(image); } static struct egl_image * import_simple_dmabuf(struct gl_renderer *gr, struct dmabuf_attributes *attributes) { struct egl_image *image; EGLint attribs[50]; int atti = 0; bool has_modifier; /* This requires the Mesa commit in * Mesa 10.3 (08264e5dad4df448e7718e782ad9077902089a07) or * Mesa 10.2.7 (55d28925e6109a4afd61f109e845a8a51bd17652). * Otherwise Mesa closes the fd behind our back and re-importing * will fail. * https://bugs.freedesktop.org/show_bug.cgi?id=76188 */ attribs[atti++] = EGL_WIDTH; attribs[atti++] = attributes->width; attribs[atti++] = EGL_HEIGHT; attribs[atti++] = attributes->height; attribs[atti++] = EGL_LINUX_DRM_FOURCC_EXT; attribs[atti++] = attributes->format; if (attributes->modifier[0] != DRM_FORMAT_MOD_INVALID) { if (!gr->has_dmabuf_import_modifiers) return NULL; has_modifier = true; } else { has_modifier = false; } if (attributes->n_planes > 0) { attribs[atti++] = EGL_DMA_BUF_PLANE0_FD_EXT; attribs[atti++] = attributes->fd[0]; attribs[atti++] = EGL_DMA_BUF_PLANE0_OFFSET_EXT; attribs[atti++] = attributes->offset[0]; attribs[atti++] = EGL_DMA_BUF_PLANE0_PITCH_EXT; attribs[atti++] = attributes->stride[0]; if (has_modifier) { attribs[atti++] = EGL_DMA_BUF_PLANE0_MODIFIER_LO_EXT; attribs[atti++] = attributes->modifier[0] & 0xFFFFFFFF; attribs[atti++] = EGL_DMA_BUF_PLANE0_MODIFIER_HI_EXT; attribs[atti++] = attributes->modifier[0] >> 32; } } if (attributes->n_planes > 1) { attribs[atti++] = EGL_DMA_BUF_PLANE1_FD_EXT; attribs[atti++] = attributes->fd[1]; attribs[atti++] = EGL_DMA_BUF_PLANE1_OFFSET_EXT; attribs[atti++] = attributes->offset[1]; attribs[atti++] = EGL_DMA_BUF_PLANE1_PITCH_EXT; attribs[atti++] = attributes->stride[1]; if (has_modifier) { attribs[atti++] = EGL_DMA_BUF_PLANE1_MODIFIER_LO_EXT; attribs[atti++] = attributes->modifier[1] & 0xFFFFFFFF; attribs[atti++] = EGL_DMA_BUF_PLANE1_MODIFIER_HI_EXT; attribs[atti++] = attributes->modifier[1] >> 32; } } if (attributes->n_planes > 2) { attribs[atti++] = EGL_DMA_BUF_PLANE2_FD_EXT; attribs[atti++] = attributes->fd[2]; attribs[atti++] = EGL_DMA_BUF_PLANE2_OFFSET_EXT; attribs[atti++] = attributes->offset[2]; attribs[atti++] = EGL_DMA_BUF_PLANE2_PITCH_EXT; attribs[atti++] = attributes->stride[2]; if (has_modifier) { attribs[atti++] = EGL_DMA_BUF_PLANE2_MODIFIER_LO_EXT; attribs[atti++] = attributes->modifier[2] & 0xFFFFFFFF; attribs[atti++] = EGL_DMA_BUF_PLANE2_MODIFIER_HI_EXT; attribs[atti++] = attributes->modifier[2] >> 32; } } if (gr->has_dmabuf_import_modifiers) { if (attributes->n_planes > 3) { attribs[atti++] = EGL_DMA_BUF_PLANE3_FD_EXT; attribs[atti++] = attributes->fd[3]; attribs[atti++] = EGL_DMA_BUF_PLANE3_OFFSET_EXT; attribs[atti++] = attributes->offset[3]; attribs[atti++] = EGL_DMA_BUF_PLANE3_PITCH_EXT; attribs[atti++] = attributes->stride[3]; attribs[atti++] = EGL_DMA_BUF_PLANE3_MODIFIER_LO_EXT; attribs[atti++] = attributes->modifier[3] & 0xFFFFFFFF; attribs[atti++] = EGL_DMA_BUF_PLANE3_MODIFIER_HI_EXT; attribs[atti++] = attributes->modifier[3] >> 32; } } attribs[atti++] = EGL_NONE; image = egl_image_create(gr, EGL_LINUX_DMA_BUF_EXT, NULL, attribs); return image; } /* The kernel header drm_fourcc.h defines the DRM formats below. We duplicate * some of the definitions here so that building Weston won't require * bleeding-edge kernel headers. */ #ifndef DRM_FORMAT_R8 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ #endif #ifndef DRM_FORMAT_GR88 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ #endif #ifndef DRM_FORMAT_XYUV8888 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ #endif struct yuv_format_descriptor yuv_formats[] = { { .format = DRM_FORMAT_YUYV, .input_planes = 1, .output_planes = 2, .texture_type = TEXTURE_Y_XUXV_WL, {{ .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_GR88, .plane_index = 0 }, { .width_divisor = 2, .height_divisor = 1, .format = DRM_FORMAT_ARGB8888, .plane_index = 0 }} }, { .format = DRM_FORMAT_NV12, .input_planes = 2, .output_planes = 2, .texture_type = TEXTURE_Y_UV_WL, {{ .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_R8, .plane_index = 0 }, { .width_divisor = 2, .height_divisor = 2, .format = DRM_FORMAT_GR88, .plane_index = 1 }} }, { .format = DRM_FORMAT_YUV420, .input_planes = 3, .output_planes = 3, .texture_type = TEXTURE_Y_U_V_WL, {{ .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_R8, .plane_index = 0 }, { .width_divisor = 2, .height_divisor = 2, .format = DRM_FORMAT_R8, .plane_index = 1 }, { .width_divisor = 2, .height_divisor = 2, .format = DRM_FORMAT_R8, .plane_index = 2 }} }, { .format = DRM_FORMAT_YUV444, .input_planes = 3, .output_planes = 3, .texture_type = TEXTURE_Y_U_V_WL, {{ .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_R8, .plane_index = 0 }, { .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_R8, .plane_index = 1 }, { .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_R8, .plane_index = 2 }} }, { .format = DRM_FORMAT_XYUV8888, .input_planes = 1, .output_planes = 1, .texture_type = TEXTURE_XYUV_WL, {{ .width_divisor = 1, .height_divisor = 1, .format = DRM_FORMAT_XBGR8888, .plane_index = 0 }} } }; static struct egl_image * import_dmabuf_single_plane(struct gl_renderer *gr, const struct dmabuf_attributes *attributes, struct yuv_plane_descriptor *descriptor) { struct dmabuf_attributes plane; struct egl_image *image; char fmt[4]; plane.width = attributes->width / descriptor->width_divisor; plane.height = attributes->height / descriptor->height_divisor; plane.format = descriptor->format; plane.n_planes = 1; plane.fd[0] = attributes->fd[descriptor->plane_index]; plane.offset[0] = attributes->offset[descriptor->plane_index]; plane.stride[0] = attributes->stride[descriptor->plane_index]; plane.modifier[0] = attributes->modifier[descriptor->plane_index]; image = import_simple_dmabuf(gr, &plane); if (!image) { weston_log("Failed to import plane %d as %.4s\n", descriptor->plane_index, dump_format(descriptor->format, fmt)); return NULL; } return image; } static bool import_yuv_dmabuf(struct gl_renderer *gr, struct dmabuf_image *image) { unsigned i; int j; int ret; struct yuv_format_descriptor *format = NULL; struct dmabuf_attributes *attributes = &image->dmabuf->attributes; char fmt[4]; for (i = 0; i < ARRAY_LENGTH(yuv_formats); ++i) { if (yuv_formats[i].format == attributes->format) { format = &yuv_formats[i]; break; } } if (!format) { weston_log("Error during import, and no known conversion for format " "%.4s in the renderer\n", dump_format(attributes->format, fmt)); return false; } if (attributes->n_planes != format->input_planes) { weston_log("%.4s dmabuf must contain %d plane%s (%d provided)\n", dump_format(format->format, fmt), format->input_planes, (format->input_planes > 1) ? "s" : "", attributes->n_planes); return false; } for (j = 0; j < format->output_planes; ++j) { image->images[j] = import_dmabuf_single_plane(gr, attributes, &format->plane[j]); if (!image->images[j]) { while (j) { ret = egl_image_unref(image->images[--j]); assert(ret == 0); } return false; } } image->num_images = format->output_planes; switch (format->texture_type) { case TEXTURE_Y_XUXV_WL: image->shader = &gr->texture_shader_y_xuxv; break; case TEXTURE_Y_UV_WL: image->shader = &gr->texture_shader_y_uv; break; case TEXTURE_Y_U_V_WL: image->shader = &gr->texture_shader_y_u_v; break; case TEXTURE_XYUV_WL: image->shader = &gr->texture_shader_xyuv; break; default: assert(false); } return true; } static void gl_renderer_query_dmabuf_modifiers_full(struct gl_renderer *gr, int format, uint64_t **modifiers, unsigned **external_only, int *num_modifiers); static struct dmabuf_format* dmabuf_format_create(struct gl_renderer *gr, uint32_t format) { struct dmabuf_format *dmabuf_format; dmabuf_format = calloc(1, sizeof(struct dmabuf_format)); if (!dmabuf_format) return NULL; dmabuf_format->format = format; gl_renderer_query_dmabuf_modifiers_full(gr, format, &dmabuf_format->modifiers, &dmabuf_format->external_only, &dmabuf_format->num_modifiers); if (dmabuf_format->num_modifiers == 0) { free(dmabuf_format); return NULL; } wl_list_insert(&gr->dmabuf_formats, &dmabuf_format->link); return dmabuf_format; } static void dmabuf_format_destroy(struct dmabuf_format *format) { free(format->modifiers); free(format->external_only); wl_list_remove(&format->link); free(format); } static GLenum choose_texture_target(struct gl_renderer *gr, struct dmabuf_attributes *attributes) { struct dmabuf_format *tmp, *format = NULL; wl_list_for_each(tmp, &gr->dmabuf_formats, link) { if (tmp->format == attributes->format) { format = tmp; break; } } if (!format) format = dmabuf_format_create(gr, attributes->format); if (format) { int i; for (i = 0; i < format->num_modifiers; ++i) { if (format->modifiers[i] == attributes->modifier[0]) { if(format->external_only[i]) return GL_TEXTURE_EXTERNAL_OES; else return GL_TEXTURE_2D; } } } if (attributes->n_planes > 1) return GL_TEXTURE_EXTERNAL_OES; switch (attributes->format & ~DRM_FORMAT_BIG_ENDIAN) { case DRM_FORMAT_YUYV: case DRM_FORMAT_YVYU: case DRM_FORMAT_UYVY: case DRM_FORMAT_VYUY: case DRM_FORMAT_AYUV: case DRM_FORMAT_XYUV8888: return GL_TEXTURE_EXTERNAL_OES; default: return GL_TEXTURE_2D; } } static struct dmabuf_image * import_dmabuf(struct gl_renderer *gr, struct linux_dmabuf_buffer *dmabuf) { struct egl_image *egl_image; struct dmabuf_image *image; image = dmabuf_image_create(); image->dmabuf = dmabuf; egl_image = import_simple_dmabuf(gr, &dmabuf->attributes); if (egl_image) { image->num_images = 1; image->images[0] = egl_image; image->import_type = IMPORT_TYPE_DIRECT; image->target = choose_texture_target(gr, &dmabuf->attributes); switch (image->target) { case GL_TEXTURE_2D: image->shader = &gr->texture_shader_rgba; break; default: image->shader = &gr->texture_shader_egl_external; } } else { if (!import_yuv_dmabuf(gr, image)) { dmabuf_image_destroy(image); return NULL; } image->import_type = IMPORT_TYPE_GL_CONVERSION; image->target = GL_TEXTURE_2D; } return image; } static void gl_renderer_query_dmabuf_formats(struct weston_compositor *wc, int **formats, int *num_formats) { struct gl_renderer *gr = get_renderer(wc); static const int fallback_formats[] = { DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_YUYV, DRM_FORMAT_NV12, DRM_FORMAT_YUV420, DRM_FORMAT_YUV444, DRM_FORMAT_XYUV8888, }; bool fallback = false; EGLint num; assert(gr->has_dmabuf_import); if (!gr->has_dmabuf_import_modifiers || !gr->query_dmabuf_formats(gr->egl_display, 0, NULL, &num)) { num = gr->has_gl_texture_rg ? ARRAY_LENGTH(fallback_formats) : 2; fallback = true; } *formats = calloc(num, sizeof(int)); if (*formats == NULL) { *num_formats = 0; return; } if (fallback) { memcpy(*formats, fallback_formats, num * sizeof(int)); *num_formats = num; return; } if (!gr->query_dmabuf_formats(gr->egl_display, num, *formats, &num)) { *num_formats = 0; free(*formats); return; } *num_formats = num; } static void gl_renderer_query_dmabuf_modifiers_full(struct gl_renderer *gr, int format, uint64_t **modifiers, unsigned **external_only, int *num_modifiers) { int num; assert(gr->has_dmabuf_import); if (!gr->has_dmabuf_import_modifiers || !gr->query_dmabuf_modifiers(gr->egl_display, format, 0, NULL, NULL, &num) || num == 0) { *num_modifiers = 0; return; } *modifiers = calloc(num, sizeof(uint64_t)); if (*modifiers == NULL) { *num_modifiers = 0; return; } if (external_only) { *external_only = calloc(num, sizeof(unsigned)); if (*external_only == NULL) { *num_modifiers = 0; free(*modifiers); return; } } if (!gr->query_dmabuf_modifiers(gr->egl_display, format, num, *modifiers, external_only ? *external_only : NULL, &num)) { *num_modifiers = 0; free(*modifiers); if (external_only) free(*external_only); return; } *num_modifiers = num; } static void gl_renderer_query_dmabuf_modifiers(struct weston_compositor *wc, int format, uint64_t **modifiers, int *num_modifiers) { struct gl_renderer *gr = get_renderer(wc); gl_renderer_query_dmabuf_modifiers_full(gr, format, modifiers, NULL, num_modifiers); } static bool gl_renderer_import_dmabuf(struct weston_compositor *ec, struct linux_dmabuf_buffer *dmabuf) { struct gl_renderer *gr = get_renderer(ec); struct dmabuf_image *image; int i; assert(gr->has_dmabuf_import); for (i = 0; i < dmabuf->attributes.n_planes; i++) { /* return if EGL doesn't support import modifiers */ if (dmabuf->attributes.modifier[i] != DRM_FORMAT_MOD_INVALID) if (!gr->has_dmabuf_import_modifiers) return false; /* return if modifiers passed are unequal */ if (dmabuf->attributes.modifier[i] != dmabuf->attributes.modifier[0]) return false; } /* reject all flags we do not recognize or handle */ if (dmabuf->attributes.flags & ~ZWP_LINUX_BUFFER_PARAMS_V1_FLAGS_Y_INVERT) return false; image = import_dmabuf(gr, dmabuf); if (!image) return false; wl_list_insert(&gr->dmabuf_images, &image->link); linux_dmabuf_buffer_set_user_data(dmabuf, image, gl_renderer_destroy_dmabuf); return true; } static bool import_known_dmabuf(struct gl_renderer *gr, struct dmabuf_image *image) { switch (image->import_type) { case IMPORT_TYPE_DIRECT: image->images[0] = import_simple_dmabuf(gr, &image->dmabuf->attributes); if (!image->images[0]) return false; image->num_images = 1; break; case IMPORT_TYPE_GL_CONVERSION: if (!import_yuv_dmabuf(gr, image)) return false; break; default: weston_log("Invalid import type for dmabuf\n"); return false; } return true; } static bool dmabuf_is_opaque(struct linux_dmabuf_buffer *dmabuf) { const struct pixel_format_info *info; info = pixel_format_get_info(dmabuf->attributes.format & ~DRM_FORMAT_BIG_ENDIAN); if (!info) return false; return pixel_format_is_opaque(info); } static void gl_renderer_attach_dmabuf(struct weston_surface *surface, struct weston_buffer *buffer, struct linux_dmabuf_buffer *dmabuf) { struct gl_renderer *gr = get_renderer(surface->compositor); struct gl_surface_state *gs = get_surface_state(surface); struct dmabuf_image *image; int i; int ret; if (!gr->has_dmabuf_import) { linux_dmabuf_buffer_send_server_error(dmabuf, "EGL dmabuf import not supported"); return; } buffer->width = dmabuf->attributes.width; buffer->height = dmabuf->attributes.height; /* * GL-renderer uses the OpenGL convention of texture coordinates, where * the origin is at bottom-left. Because dmabuf buffers have the origin * at top-left, we must invert the Y_INVERT flag to get the image right. */ buffer->y_inverted = !(dmabuf->attributes.flags & ZWP_LINUX_BUFFER_PARAMS_V1_FLAGS_Y_INVERT); for (i = 0; i < gs->num_images; i++) egl_image_unref(gs->images[i]); gs->num_images = 0; gs->pitch = buffer->width; gs->height = buffer->height; gs->buffer_type = BUFFER_TYPE_EGL; gs->y_inverted = buffer->y_inverted; gs->direct_display = dmabuf->direct_display; surface->is_opaque = dmabuf_is_opaque(dmabuf); /* * We try to always hold an imported EGLImage from the dmabuf * to prevent the client from preventing re-imports. But, we also * need to re-import every time the contents may change because * GL driver's caching may need flushing. * * Here we release the cache reference which has to be final. */ if (dmabuf->direct_display) return; image = linux_dmabuf_buffer_get_user_data(dmabuf); /* The dmabuf_image should have been created during the import */ assert(image != NULL); for (i = 0; i < image->num_images; ++i) { ret = egl_image_unref(image->images[i]); assert(ret == 0); } if (!import_known_dmabuf(gr, image)) { linux_dmabuf_buffer_send_server_error(dmabuf, "EGL dmabuf import failed"); return; } gs->num_images = image->num_images; for (i = 0; i < gs->num_images; ++i) gs->images[i] = egl_image_ref(image->images[i]); gs->target = image->target; ensure_textures(gs, gs->num_images); for (i = 0; i < gs->num_images; ++i) { glActiveTexture(GL_TEXTURE0 + i); glBindTexture(gs->target, gs->textures[i]); gr->image_target_texture_2d(gs->target, gs->images[i]->image); } gs->shader = image->shader; } static void gl_renderer_attach(struct weston_surface *es, struct weston_buffer *buffer) { struct weston_compositor *ec = es->compositor; struct gl_renderer *gr = get_renderer(ec); struct gl_surface_state *gs = get_surface_state(es); struct wl_shm_buffer *shm_buffer; struct linux_dmabuf_buffer *dmabuf; EGLint format; int i; weston_buffer_reference(&gs->buffer_ref, buffer); weston_buffer_release_reference(&gs->buffer_release_ref, es->buffer_release_ref.buffer_release); if (!buffer) { for (i = 0; i < gs->num_images; i++) { egl_image_unref(gs->images[i]); gs->images[i] = NULL; } gs->num_images = 0; glDeleteTextures(gs->num_textures, gs->textures); gs->num_textures = 0; gs->buffer_type = BUFFER_TYPE_NULL; gs->y_inverted = true; gs->direct_display = false; es->is_opaque = false; return; } shm_buffer = wl_shm_buffer_get(buffer->resource); if (shm_buffer) gl_renderer_attach_shm(es, buffer, shm_buffer); else if (gr->has_bind_display && gr->query_buffer(gr->egl_display, (void *)buffer->resource, EGL_TEXTURE_FORMAT, &format)) gl_renderer_attach_egl(es, buffer, format); else if ((dmabuf = linux_dmabuf_buffer_get(buffer->resource))) gl_renderer_attach_dmabuf(es, buffer, dmabuf); else { weston_log("unhandled buffer type!\n"); if (gr->has_bind_display) { weston_log("eglQueryWaylandBufferWL failed\n"); gl_renderer_print_egl_error_state(); } weston_buffer_reference(&gs->buffer_ref, NULL); weston_buffer_release_reference(&gs->buffer_release_ref, NULL); gs->buffer_type = BUFFER_TYPE_NULL; gs->y_inverted = true; es->is_opaque = false; weston_buffer_send_server_error(buffer, "disconnecting due to unhandled buffer type"); } } static void gl_renderer_surface_set_color(struct weston_surface *surface, float red, float green, float blue, float alpha) { struct gl_surface_state *gs = get_surface_state(surface); struct gl_renderer *gr = get_renderer(surface->compositor); gs->color[0] = red; gs->color[1] = green; gs->color[2] = blue; gs->color[3] = alpha; gs->buffer_type = BUFFER_TYPE_SOLID; gs->pitch = 1; gs->height = 1; gs->shader = &gr->solid_shader; } static void gl_renderer_surface_get_content_size(struct weston_surface *surface, int *width, int *height) { struct gl_surface_state *gs = get_surface_state(surface); if (gs->buffer_type == BUFFER_TYPE_NULL) { *width = 0; *height = 0; } else { *width = gs->pitch; *height = gs->height; } } static uint32_t pack_color(pixman_format_code_t format, float *c) { uint8_t r = round(c[0] * 255.0f); uint8_t g = round(c[1] * 255.0f); uint8_t b = round(c[2] * 255.0f); uint8_t a = round(c[3] * 255.0f); switch (format) { case PIXMAN_a8b8g8r8: return (a << 24) | (b << 16) | (g << 8) | r; default: assert(0); return 0; } } static int gl_renderer_surface_copy_content(struct weston_surface *surface, void *target, size_t size, int src_x, int src_y, int width, int height) { static const GLfloat verts[4 * 2] = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f }; static const GLfloat projmat_normal[16] = { /* transpose */ 2.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, -1.0f, -1.0f, 0.0f, 1.0f }; static const GLfloat projmat_yinvert[16] = { /* transpose */ 2.0f, 0.0f, 0.0f, 0.0f, 0.0f, -2.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f }; const pixman_format_code_t format = PIXMAN_a8b8g8r8; const size_t bytespp = 4; /* PIXMAN_a8b8g8r8 */ const GLenum gl_format = GL_RGBA; /* PIXMAN_a8b8g8r8 little-endian */ struct gl_renderer *gr = get_renderer(surface->compositor); struct gl_surface_state *gs = get_surface_state(surface); int cw, ch; GLuint fbo; GLuint tex; GLenum status; const GLfloat *proj; int i; gl_renderer_surface_get_content_size(surface, &cw, &ch); switch (gs->buffer_type) { case BUFFER_TYPE_NULL: return -1; case BUFFER_TYPE_SOLID: *(uint32_t *)target = pack_color(format, gs->color); return 0; case BUFFER_TYPE_SHM: gl_renderer_flush_damage(surface); /* fall through */ case BUFFER_TYPE_EGL: break; } glGenTextures(1, &tex); glBindTexture(GL_TEXTURE_2D, tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cw, ch, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex, 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { weston_log("%s: fbo error: %#x\n", __func__, status); glDeleteFramebuffers(1, &fbo); glDeleteTextures(1, &tex); return -1; } glViewport(0, 0, cw, ch); glDisable(GL_BLEND); use_shader(gr, gs->shader); if (gs->y_inverted) proj = projmat_normal; else proj = projmat_yinvert; glUniformMatrix4fv(gs->shader->proj_uniform, 1, GL_FALSE, proj); glUniform1f(gs->shader->alpha_uniform, 1.0f); for (i = 0; i < gs->num_textures; i++) { glUniform1i(gs->shader->tex_uniforms[i], i); glActiveTexture(GL_TEXTURE0 + i); glBindTexture(gs->target, gs->textures[i]); glTexParameteri(gs->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(gs->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } /* position: */ glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, verts); glEnableVertexAttribArray(0); /* texcoord: */ glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, verts); glEnableVertexAttribArray(1); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glDisableVertexAttribArray(1); glDisableVertexAttribArray(0); glPixelStorei(GL_PACK_ALIGNMENT, bytespp); glReadPixels(src_x, src_y, width, height, gl_format, GL_UNSIGNED_BYTE, target); glDeleteFramebuffers(1, &fbo); glDeleteTextures(1, &tex); return 0; } static void surface_state_destroy(struct gl_surface_state *gs, struct gl_renderer *gr) { int i; wl_list_remove(&gs->surface_destroy_listener.link); wl_list_remove(&gs->renderer_destroy_listener.link); gs->surface->renderer_state = NULL; glDeleteTextures(gs->num_textures, gs->textures); for (i = 0; i < gs->num_images; i++) egl_image_unref(gs->images[i]); weston_buffer_reference(&gs->buffer_ref, NULL); weston_buffer_release_reference(&gs->buffer_release_ref, NULL); pixman_region32_fini(&gs->texture_damage); free(gs); } static void surface_state_handle_surface_destroy(struct wl_listener *listener, void *data) { struct gl_surface_state *gs; struct gl_renderer *gr; gs = container_of(listener, struct gl_surface_state, surface_destroy_listener); gr = get_renderer(gs->surface->compositor); surface_state_destroy(gs, gr); } static void surface_state_handle_renderer_destroy(struct wl_listener *listener, void *data) { struct gl_surface_state *gs; struct gl_renderer *gr; gr = data; gs = container_of(listener, struct gl_surface_state, renderer_destroy_listener); surface_state_destroy(gs, gr); } static int gl_renderer_create_surface(struct weston_surface *surface) { struct gl_surface_state *gs; struct gl_renderer *gr = get_renderer(surface->compositor); gs = zalloc(sizeof *gs); if (gs == NULL) return -1; /* A buffer is never attached to solid color surfaces, yet * they still go through texcoord computations. Do not divide * by zero there. */ gs->pitch = 1; gs->y_inverted = true; gs->direct_display = false; gs->surface = surface; pixman_region32_init(&gs->texture_damage); surface->renderer_state = gs; gs->surface_destroy_listener.notify = surface_state_handle_surface_destroy; wl_signal_add(&surface->destroy_signal, &gs->surface_destroy_listener); gs->renderer_destroy_listener.notify = surface_state_handle_renderer_destroy; wl_signal_add(&gr->destroy_signal, &gs->renderer_destroy_listener); if (surface->buffer_ref.buffer) { gl_renderer_attach(surface, surface->buffer_ref.buffer); gl_renderer_flush_damage(surface); } return 0; } static const char vertex_shader[] = "uniform mat4 proj;\n" "attribute vec2 position;\n" "attribute vec2 texcoord;\n" "varying vec2 v_texcoord;\n" "void main()\n" "{\n" " gl_Position = proj * vec4(position, 0.0, 1.0);\n" " v_texcoord = texcoord;\n" "}\n"; /* Declare common fragment shader uniforms */ #define FRAGMENT_CONVERT_YUV \ " y *= alpha;\n" \ " u *= alpha;\n" \ " v *= alpha;\n" \ " gl_FragColor.r = y + 1.59602678 * v;\n" \ " gl_FragColor.g = y - 0.39176229 * u - 0.81296764 * v;\n" \ " gl_FragColor.b = y + 2.01723214 * u;\n" \ " gl_FragColor.a = alpha;\n" static const char fragment_debug[] = " gl_FragColor = vec4(0.0, 0.3, 0.0, 0.2) + gl_FragColor * 0.8;\n"; static const char fragment_brace[] = "}\n"; static const char texture_fragment_shader_rgba[] = "precision mediump float;\n" "varying vec2 v_texcoord;\n" "uniform sampler2D tex;\n" "uniform float alpha;\n" "void main()\n" "{\n" " gl_FragColor = alpha * texture2D(tex, v_texcoord)\n;" ; static const char texture_fragment_shader_rgbx[] = "precision mediump float;\n" "varying vec2 v_texcoord;\n" "uniform sampler2D tex;\n" "uniform float alpha;\n" "void main()\n" "{\n" " gl_FragColor.rgb = alpha * texture2D(tex, v_texcoord).rgb\n;" " gl_FragColor.a = alpha;\n" ; static const char texture_fragment_shader_egl_external[] = "#extension GL_OES_EGL_image_external : require\n" "precision mediump float;\n" "varying vec2 v_texcoord;\n" "uniform samplerExternalOES tex;\n" "uniform float alpha;\n" "void main()\n" "{\n" " gl_FragColor = alpha * texture2D(tex, v_texcoord)\n;" ; static const char texture_fragment_shader_y_uv[] = "precision mediump float;\n" "uniform sampler2D tex;\n" "uniform sampler2D tex1;\n" "varying vec2 v_texcoord;\n" "uniform float alpha;\n" "void main() {\n" " float y = 1.16438356 * (texture2D(tex, v_texcoord).x - 0.0625);\n" " float u = texture2D(tex1, v_texcoord).r - 0.5;\n" " float v = texture2D(tex1, v_texcoord).g - 0.5;\n" FRAGMENT_CONVERT_YUV ; static const char texture_fragment_shader_y_u_v[] = "precision mediump float;\n" "uniform sampler2D tex;\n" "uniform sampler2D tex1;\n" "uniform sampler2D tex2;\n" "varying vec2 v_texcoord;\n" "uniform float alpha;\n" "void main() {\n" " float y = 1.16438356 * (texture2D(tex, v_texcoord).x - 0.0625);\n" " float u = texture2D(tex1, v_texcoord).x - 0.5;\n" " float v = texture2D(tex2, v_texcoord).x - 0.5;\n" FRAGMENT_CONVERT_YUV ; static const char texture_fragment_shader_y_xuxv[] = "precision mediump float;\n" "uniform sampler2D tex;\n" "uniform sampler2D tex1;\n" "varying vec2 v_texcoord;\n" "uniform float alpha;\n" "void main() {\n" " float y = 1.16438356 * (texture2D(tex, v_texcoord).x - 0.0625);\n" " float u = texture2D(tex1, v_texcoord).g - 0.5;\n" " float v = texture2D(tex1, v_texcoord).a - 0.5;\n" FRAGMENT_CONVERT_YUV ; static const char texture_fragment_shader_xyuv[] = "precision mediump float;\n" "uniform sampler2D tex;\n" "varying vec2 v_texcoord;\n" "uniform float alpha;\n" "void main() {\n" " float y = 1.16438356 * (texture2D(tex, v_texcoord).b - 0.0625);\n" " float u = texture2D(tex, v_texcoord).g - 0.5;\n" " float v = texture2D(tex, v_texcoord).r - 0.5;\n" FRAGMENT_CONVERT_YUV ; static const char solid_fragment_shader[] = "precision mediump float;\n" "uniform vec4 color;\n" "uniform float alpha;\n" "void main()\n" "{\n" " gl_FragColor = alpha * color\n;" ; static int compile_shader(GLenum type, int count, const char **sources) { GLuint s; char msg[512]; GLint status; s = glCreateShader(type); glShaderSource(s, count, sources, NULL); glCompileShader(s); glGetShaderiv(s, GL_COMPILE_STATUS, &status); if (!status) { glGetShaderInfoLog(s, sizeof msg, NULL, msg); weston_log("shader info: %s\n", msg); return GL_NONE; } return s; } static int shader_init(struct gl_shader *shader, struct gl_renderer *renderer, const char *vertex_source, const char *fragment_source) { char msg[512]; GLint status; int count; const char *sources[3]; shader->vertex_shader = compile_shader(GL_VERTEX_SHADER, 1, &vertex_source); if (shader->vertex_shader == GL_NONE) return -1; if (renderer->fragment_shader_debug) { sources[0] = fragment_source; sources[1] = fragment_debug; sources[2] = fragment_brace; count = 3; } else { sources[0] = fragment_source; sources[1] = fragment_brace; count = 2; } shader->fragment_shader = compile_shader(GL_FRAGMENT_SHADER, count, sources); if (shader->fragment_shader == GL_NONE) return -1; shader->program = glCreateProgram(); glAttachShader(shader->program, shader->vertex_shader); glAttachShader(shader->program, shader->fragment_shader); glBindAttribLocation(shader->program, 0, "position"); glBindAttribLocation(shader->program, 1, "texcoord"); glLinkProgram(shader->program); glGetProgramiv(shader->program, GL_LINK_STATUS, &status); if (!status) { glGetProgramInfoLog(shader->program, sizeof msg, NULL, msg); weston_log("link info: %s\n", msg); return -1; } shader->proj_uniform = glGetUniformLocation(shader->program, "proj"); shader->tex_uniforms[0] = glGetUniformLocation(shader->program, "tex"); shader->tex_uniforms[1] = glGetUniformLocation(shader->program, "tex1"); shader->tex_uniforms[2] = glGetUniformLocation(shader->program, "tex2"); shader->alpha_uniform = glGetUniformLocation(shader->program, "alpha"); shader->color_uniform = glGetUniformLocation(shader->program, "color"); return 0; } static void shader_release(struct gl_shader *shader) { glDeleteShader(shader->vertex_shader); glDeleteShader(shader->fragment_shader); glDeleteProgram(shader->program); shader->vertex_shader = 0; shader->fragment_shader = 0; shader->program = 0; } void gl_renderer_log_extensions(const char *name, const char *extensions) { const char *p, *end; int l; int len; l = weston_log("%s:", name); p = extensions; while (*p) { end = strchrnul(p, ' '); len = end - p; if (l + len > 78) l = weston_log_continue("\n" STAMP_SPACE "%.*s", len, p); else l += weston_log_continue(" %.*s", len, p); for (p = end; isspace(*p); p++) ; } weston_log_continue("\n"); } static void log_egl_info(EGLDisplay egldpy) { const char *str; str = eglQueryString(egldpy, EGL_VERSION); weston_log("EGL version: %s\n", str ? str : "(null)"); str = eglQueryString(egldpy, EGL_VENDOR); weston_log("EGL vendor: %s\n", str ? str : "(null)"); str = eglQueryString(egldpy, EGL_CLIENT_APIS); weston_log("EGL client APIs: %s\n", str ? str : "(null)"); str = eglQueryString(egldpy, EGL_EXTENSIONS); gl_renderer_log_extensions("EGL extensions", str ? str : "(null)"); } static void log_gl_info(void) { const char *str; str = (char *)glGetString(GL_VERSION); weston_log("GL version: %s\n", str ? str : "(null)"); str = (char *)glGetString(GL_SHADING_LANGUAGE_VERSION); weston_log("GLSL version: %s\n", str ? str : "(null)"); str = (char *)glGetString(GL_VENDOR); weston_log("GL vendor: %s\n", str ? str : "(null)"); str = (char *)glGetString(GL_RENDERER); weston_log("GL renderer: %s\n", str ? str : "(null)"); str = (char *)glGetString(GL_EXTENSIONS); gl_renderer_log_extensions("GL extensions", str ? str : "(null)"); } static void gl_renderer_output_set_border(struct weston_output *output, enum gl_renderer_border_side side, int32_t width, int32_t height, int32_t tex_width, unsigned char *data) { struct gl_output_state *go = get_output_state(output); if (go->borders[side].width != width || go->borders[side].height != height) /* In this case, we have to blow everything and do a full * repaint. */ go->border_status |= BORDER_SIZE_CHANGED | BORDER_ALL_DIRTY; if (data == NULL) { width = 0; height = 0; } go->borders[side].width = width; go->borders[side].height = height; go->borders[side].tex_width = tex_width; go->borders[side].data = data; go->border_status |= 1 << side; } static int gl_renderer_setup(struct weston_compositor *ec, EGLSurface egl_surface); static EGLSurface gl_renderer_create_window_surface(struct gl_renderer *gr, EGLNativeWindowType window_for_legacy, void *window_for_platform, const uint32_t *drm_formats, unsigned drm_formats_count) { EGLSurface egl_surface = EGL_NO_SURFACE; EGLConfig egl_config; egl_config = gl_renderer_get_egl_config(gr, EGL_WINDOW_BIT, drm_formats, drm_formats_count); if (egl_config == EGL_NO_CONFIG_KHR) return EGL_NO_SURFACE; log_egl_config_info(gr->egl_display, egl_config); if (gr->create_platform_window) egl_surface = gr->create_platform_window(gr->egl_display, egl_config, window_for_platform, NULL); else egl_surface = eglCreateWindowSurface(gr->egl_display, egl_config, window_for_legacy, NULL); return egl_surface; } static int gl_renderer_output_create(struct weston_output *output, EGLSurface surface) { struct gl_output_state *go; int i; go = zalloc(sizeof *go); if (go == NULL) return -1; go->egl_surface = surface; for (i = 0; i < BUFFER_DAMAGE_COUNT; i++) pixman_region32_init(&go->buffer_damage[i]); wl_list_init(&go->timeline_render_point_list); go->begin_render_sync = EGL_NO_SYNC_KHR; go->end_render_sync = EGL_NO_SYNC_KHR; output->renderer_state = go; return 0; } static int gl_renderer_output_window_create(struct weston_output *output, const struct gl_renderer_output_options *options) { struct weston_compositor *ec = output->compositor; struct gl_renderer *gr = get_renderer(ec); EGLSurface egl_surface = EGL_NO_SURFACE; int ret = 0; egl_surface = gl_renderer_create_window_surface(gr, options->window_for_legacy, options->window_for_platform, options->drm_formats, options->drm_formats_count); if (egl_surface == EGL_NO_SURFACE) { weston_log("failed to create egl surface\n"); return -1; } ret = gl_renderer_output_create(output, egl_surface); if (ret < 0) weston_platform_destroy_egl_surface(gr->egl_display, egl_surface); return ret; } static int gl_renderer_output_pbuffer_create(struct weston_output *output, const struct gl_renderer_pbuffer_options *options) { struct gl_renderer *gr = get_renderer(output->compositor); EGLConfig pbuffer_config; EGLSurface egl_surface; int ret; EGLint pbuffer_attribs[] = { EGL_WIDTH, options->width, EGL_HEIGHT, options->height, EGL_NONE }; pbuffer_config = gl_renderer_get_egl_config(gr, EGL_PBUFFER_BIT, options->drm_formats, options->drm_formats_count); if (pbuffer_config == EGL_NO_CONFIG_KHR) { weston_log("failed to choose EGL config for PbufferSurface\n"); return -1; } log_egl_config_info(gr->egl_display, pbuffer_config); egl_surface = eglCreatePbufferSurface(gr->egl_display, pbuffer_config, pbuffer_attribs); if (egl_surface == EGL_NO_SURFACE) { weston_log("failed to create egl surface\n"); gl_renderer_print_egl_error_state(); return -1; } ret = gl_renderer_output_create(output, egl_surface); if (ret < 0) eglDestroySurface(gr->egl_display, egl_surface); return ret; } static void gl_renderer_output_destroy(struct weston_output *output) { struct gl_renderer *gr = get_renderer(output->compositor); struct gl_output_state *go = get_output_state(output); struct timeline_render_point *trp, *tmp; int i; for (i = 0; i < 2; i++) pixman_region32_fini(&go->buffer_damage[i]); eglMakeCurrent(gr->egl_display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); weston_platform_destroy_egl_surface(gr->egl_display, go->egl_surface); if (!wl_list_empty(&go->timeline_render_point_list)) weston_log("warning: discarding pending timeline render" "objects at output destruction"); wl_list_for_each_safe(trp, tmp, &go->timeline_render_point_list, link) timeline_render_point_destroy(trp); if (go->begin_render_sync != EGL_NO_SYNC_KHR) gr->destroy_sync(gr->egl_display, go->begin_render_sync); if (go->end_render_sync != EGL_NO_SYNC_KHR) gr->destroy_sync(gr->egl_display, go->end_render_sync); free(go); } static int gl_renderer_create_fence_fd(struct weston_output *output) { struct gl_output_state *go = get_output_state(output); struct gl_renderer *gr = get_renderer(output->compositor); int fd; if (go->end_render_sync == EGL_NO_SYNC_KHR) return -1; fd = gr->dup_native_fence_fd(gr->egl_display, go->end_render_sync); if (fd == EGL_NO_NATIVE_FENCE_FD_ANDROID) return -1; return fd; } static void gl_renderer_destroy(struct weston_compositor *ec) { struct gl_renderer *gr = get_renderer(ec); struct dmabuf_image *image, *next; struct dmabuf_format *format, *next_format; wl_signal_emit(&gr->destroy_signal, gr); if (gr->has_bind_display) gr->unbind_display(gr->egl_display, ec->wl_display); /* Work around crash in egl_dri2.c's dri2_make_current() - when does this apply? */ eglMakeCurrent(gr->egl_display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); wl_list_for_each_safe(image, next, &gr->dmabuf_images, link) dmabuf_image_destroy(image); wl_list_for_each_safe(format, next_format, &gr->dmabuf_formats, link) dmabuf_format_destroy(format); if (gr->dummy_surface != EGL_NO_SURFACE) weston_platform_destroy_egl_surface(gr->egl_display, gr->dummy_surface); eglTerminate(gr->egl_display); eglReleaseThread(); wl_list_remove(&gr->output_destroy_listener.link); wl_array_release(&gr->vertices); wl_array_release(&gr->vtxcnt); if (gr->fragment_binding) weston_binding_destroy(gr->fragment_binding); if (gr->fan_binding) weston_binding_destroy(gr->fan_binding); free(gr); } static void output_handle_destroy(struct wl_listener *listener, void *data) { struct gl_renderer *gr; struct weston_output *output = data; gr = container_of(listener, struct gl_renderer, output_destroy_listener); if (wl_list_empty(&output->compositor->output_list)) eglMakeCurrent(gr->egl_display, gr->dummy_surface, gr->dummy_surface, gr->egl_context); } static int gl_renderer_create_pbuffer_surface(struct gl_renderer *gr) { EGLConfig pbuffer_config; static const EGLint pbuffer_attribs[] = { EGL_WIDTH, 10, EGL_HEIGHT, 10, EGL_NONE }; pbuffer_config = gr->egl_config; if (pbuffer_config == EGL_NO_CONFIG_KHR) { pbuffer_config = gl_renderer_get_egl_config(gr, EGL_PBUFFER_BIT, NULL, 0); } if (pbuffer_config == EGL_NO_CONFIG_KHR) { weston_log("failed to choose EGL config for PbufferSurface\n"); return -1; } gr->dummy_surface = eglCreatePbufferSurface(gr->egl_display, pbuffer_config, pbuffer_attribs); if (gr->dummy_surface == EGL_NO_SURFACE) { weston_log("failed to create PbufferSurface\n"); return -1; } return 0; } static int gl_renderer_display_create(struct weston_compositor *ec, const struct gl_renderer_display_options *options) { struct gl_renderer *gr; gr = zalloc(sizeof *gr); if (gr == NULL) return -1; gr->platform = options->egl_platform; if (gl_renderer_setup_egl_client_extensions(gr) < 0) goto fail; gr->base.read_pixels = gl_renderer_read_pixels; gr->base.repaint_output = gl_renderer_repaint_output; gr->base.flush_damage = gl_renderer_flush_damage; gr->base.attach = gl_renderer_attach; gr->base.surface_set_color = gl_renderer_surface_set_color; gr->base.destroy = gl_renderer_destroy; gr->base.surface_get_content_size = gl_renderer_surface_get_content_size; gr->base.surface_copy_content = gl_renderer_surface_copy_content; if (gl_renderer_setup_egl_display(gr, options->egl_native_display) < 0) goto fail; log_egl_info(gr->egl_display); ec->renderer = &gr->base; if (gl_renderer_setup_egl_extensions(ec) < 0) goto fail_with_error; if (!gr->has_configless_context) { EGLint egl_surface_type = options->egl_surface_type; if (!gr->has_surfaceless_context) egl_surface_type |= EGL_PBUFFER_BIT; gr->egl_config = gl_renderer_get_egl_config(gr, egl_surface_type, options->drm_formats, options->drm_formats_count); if (gr->egl_config == EGL_NO_CONFIG_KHR) { weston_log("failed to choose EGL config\n"); goto fail_terminate; } } ec->capabilities |= WESTON_CAP_ROTATION_ANY; ec->capabilities |= WESTON_CAP_CAPTURE_YFLIP; ec->capabilities |= WESTON_CAP_VIEW_CLIP_MASK; if (gr->has_native_fence_sync && gr->has_wait_sync) ec->capabilities |= WESTON_CAP_EXPLICIT_SYNC; wl_list_init(&gr->dmabuf_images); if (gr->has_dmabuf_import) { gr->base.import_dmabuf = gl_renderer_import_dmabuf; gr->base.query_dmabuf_formats = gl_renderer_query_dmabuf_formats; gr->base.query_dmabuf_modifiers = gl_renderer_query_dmabuf_modifiers; } wl_list_init(&gr->dmabuf_formats); if (gr->has_surfaceless_context) { weston_log("EGL_KHR_surfaceless_context available\n"); gr->dummy_surface = EGL_NO_SURFACE; } else { weston_log("EGL_KHR_surfaceless_context unavailable. " "Trying PbufferSurface\n"); if (gl_renderer_create_pbuffer_surface(gr) < 0) goto fail_with_error; } wl_display_add_shm_format(ec->wl_display, WL_SHM_FORMAT_RGB565); wl_display_add_shm_format(ec->wl_display, WL_SHM_FORMAT_YUV420); wl_display_add_shm_format(ec->wl_display, WL_SHM_FORMAT_NV12); wl_display_add_shm_format(ec->wl_display, WL_SHM_FORMAT_YUYV); wl_signal_init(&gr->destroy_signal); if (gl_renderer_setup(ec, gr->dummy_surface) < 0) { if (gr->dummy_surface != EGL_NO_SURFACE) weston_platform_destroy_egl_surface(gr->egl_display, gr->dummy_surface); goto fail_with_error; } return 0; fail_with_error: gl_renderer_print_egl_error_state(); fail_terminate: eglTerminate(gr->egl_display); fail: free(gr); ec->renderer = NULL; return -1; } static int compile_shaders(struct weston_compositor *ec) { struct gl_renderer *gr = get_renderer(ec); gr->texture_shader_rgba.vertex_source = vertex_shader; gr->texture_shader_rgba.fragment_source = texture_fragment_shader_rgba; gr->texture_shader_rgbx.vertex_source = vertex_shader; gr->texture_shader_rgbx.fragment_source = texture_fragment_shader_rgbx; gr->texture_shader_egl_external.vertex_source = vertex_shader; gr->texture_shader_egl_external.fragment_source = texture_fragment_shader_egl_external; gr->texture_shader_y_uv.vertex_source = vertex_shader; gr->texture_shader_y_uv.fragment_source = texture_fragment_shader_y_uv; gr->texture_shader_y_u_v.vertex_source = vertex_shader; gr->texture_shader_y_u_v.fragment_source = texture_fragment_shader_y_u_v; gr->texture_shader_y_xuxv.vertex_source = vertex_shader; gr->texture_shader_y_xuxv.fragment_source = texture_fragment_shader_y_xuxv; gr->texture_shader_xyuv.vertex_source = vertex_shader; gr->texture_shader_xyuv.fragment_source = texture_fragment_shader_xyuv; gr->solid_shader.vertex_source = vertex_shader; gr->solid_shader.fragment_source = solid_fragment_shader; return 0; } static void fragment_debug_binding(struct weston_keyboard *keyboard, const struct timespec *time, uint32_t key, void *data) { struct weston_compositor *ec = data; struct gl_renderer *gr = get_renderer(ec); struct weston_output *output; gr->fragment_shader_debug = !gr->fragment_shader_debug; shader_release(&gr->texture_shader_rgba); shader_release(&gr->texture_shader_rgbx); shader_release(&gr->texture_shader_egl_external); shader_release(&gr->texture_shader_y_uv); shader_release(&gr->texture_shader_y_u_v); shader_release(&gr->texture_shader_y_xuxv); shader_release(&gr->texture_shader_xyuv); shader_release(&gr->solid_shader); /* Force use_shader() to call glUseProgram(), since we need to use * the recompiled version of the shader. */ gr->current_shader = NULL; wl_list_for_each(output, &ec->output_list, link) weston_output_damage(output); } static void fan_debug_repaint_binding(struct weston_keyboard *keyboard, const struct timespec *time, uint32_t key, void *data) { struct weston_compositor *compositor = data; struct gl_renderer *gr = get_renderer(compositor); gr->fan_debug = !gr->fan_debug; weston_compositor_damage_all(compositor); } static uint32_t get_gl_version(void) { const char *version; int major, minor; version = (const char *) glGetString(GL_VERSION); if (version && (sscanf(version, "%d.%d", &major, &minor) == 2 || sscanf(version, "OpenGL ES %d.%d", &major, &minor) == 2)) { return GR_GL_VERSION(major, minor); } return GR_GL_VERSION_INVALID; } static int gl_renderer_setup(struct weston_compositor *ec, EGLSurface egl_surface) { struct gl_renderer *gr = get_renderer(ec); const char *extensions; EGLBoolean ret; EGLint context_attribs[16] = { EGL_CONTEXT_CLIENT_VERSION, 0, }; unsigned int nattr = 2; if (!eglBindAPI(EGL_OPENGL_ES_API)) { weston_log("failed to bind EGL_OPENGL_ES_API\n"); gl_renderer_print_egl_error_state(); return -1; } /* * Being the compositor we require minimum output latency, * so request a high priority context for ourselves - that should * reschedule all of our rendering and its dependencies to be completed * first. If the driver doesn't permit us to create a high priority * context, it will fallback to the default priority (MEDIUM). */ if (gr->has_context_priority) { context_attribs[nattr++] = EGL_CONTEXT_PRIORITY_LEVEL_IMG; context_attribs[nattr++] = EGL_CONTEXT_PRIORITY_HIGH_IMG; } assert(nattr < ARRAY_LENGTH(context_attribs)); context_attribs[nattr] = EGL_NONE; /* try to create an OpenGLES 3 context first */ context_attribs[1] = 3; gr->egl_context = eglCreateContext(gr->egl_display, gr->egl_config, EGL_NO_CONTEXT, context_attribs); if (gr->egl_context == NULL) { /* and then fallback to OpenGLES 2 */ context_attribs[1] = 2; gr->egl_context = eglCreateContext(gr->egl_display, gr->egl_config, EGL_NO_CONTEXT, context_attribs); if (gr->egl_context == NULL) { weston_log("failed to create context\n"); gl_renderer_print_egl_error_state(); return -1; } } if (gr->has_context_priority) { EGLint value = EGL_CONTEXT_PRIORITY_MEDIUM_IMG; eglQueryContext(gr->egl_display, gr->egl_context, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value); if (value != EGL_CONTEXT_PRIORITY_HIGH_IMG) { weston_log("Failed to obtain a high priority context.\n"); /* Not an error, continue on as normal */ } } ret = eglMakeCurrent(gr->egl_display, egl_surface, egl_surface, gr->egl_context); if (ret == EGL_FALSE) { weston_log("Failed to make EGL context current.\n"); gl_renderer_print_egl_error_state(); return -1; } gr->gl_version = get_gl_version(); if (gr->gl_version == GR_GL_VERSION_INVALID) { weston_log("warning: failed to detect GLES version, " "defaulting to 2.0.\n"); gr->gl_version = GR_GL_VERSION(2, 0); } log_gl_info(); gr->image_target_texture_2d = (void *) eglGetProcAddress("glEGLImageTargetTexture2DOES"); extensions = (const char *) glGetString(GL_EXTENSIONS); if (!extensions) { weston_log("Retrieving GL extension string failed.\n"); return -1; } if (!weston_check_egl_extension(extensions, "GL_EXT_texture_format_BGRA8888")) { weston_log("GL_EXT_texture_format_BGRA8888 not available\n"); return -1; } if (weston_check_egl_extension(extensions, "GL_EXT_read_format_bgra")) ec->read_format = PIXMAN_a8r8g8b8; else ec->read_format = PIXMAN_a8b8g8r8; if (gr->gl_version >= GR_GL_VERSION(3, 0) || weston_check_egl_extension(extensions, "GL_EXT_unpack_subimage")) gr->has_unpack_subimage = true; if (gr->gl_version >= GR_GL_VERSION(3, 0) || weston_check_egl_extension(extensions, "GL_EXT_texture_rg")) gr->has_gl_texture_rg = true; if (weston_check_egl_extension(extensions, "GL_OES_EGL_image_external")) gr->has_egl_image_external = true; glActiveTexture(GL_TEXTURE0); if (compile_shaders(ec)) return -1; gr->fragment_binding = weston_compositor_add_debug_binding(ec, KEY_S, fragment_debug_binding, ec); gr->fan_binding = weston_compositor_add_debug_binding(ec, KEY_F, fan_debug_repaint_binding, ec); gr->output_destroy_listener.notify = output_handle_destroy; wl_signal_add(&ec->output_destroyed_signal, &gr->output_destroy_listener); weston_log("GL ES 2 renderer features:\n"); weston_log_continue(STAMP_SPACE "read-back format: %s\n", ec->read_format == PIXMAN_a8r8g8b8 ? "BGRA" : "RGBA"); weston_log_continue(STAMP_SPACE "wl_shm sub-image to texture: %s\n", gr->has_unpack_subimage ? "yes" : "no"); weston_log_continue(STAMP_SPACE "EGL Wayland extension: %s\n", gr->has_bind_display ? "yes" : "no"); return 0; } WL_EXPORT struct gl_renderer_interface gl_renderer_interface = { .display_create = gl_renderer_display_create, .output_window_create = gl_renderer_output_window_create, .output_pbuffer_create = gl_renderer_output_pbuffer_create, .output_destroy = gl_renderer_output_destroy, .output_set_border = gl_renderer_output_set_border, .create_fence_fd = gl_renderer_create_fence_fd, };