/* * Copyright 2012 Intel Corporation * Copyright 2015,2019,2021 Collabora, Ltd. * Copyright 2016 NVIDIA Corporation * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* GLSL version 1.00 ES, defined in gl-shaders.c */ /* For annotating shader compile-time constant arguments */ #define compile_const const /* * Enumeration of shader variants, must match enum gl_shader_texture_variant. */ #define SHADER_VARIANT_RGBX 1 #define SHADER_VARIANT_RGBA 2 #define SHADER_VARIANT_Y_U_V 3 #define SHADER_VARIANT_Y_UV 4 #define SHADER_VARIANT_Y_XUXV 5 #define SHADER_VARIANT_XYUV 6 #define SHADER_VARIANT_SOLID 7 #define SHADER_VARIANT_EXTERNAL 8 /* enum gl_shader_color_curve */ #define SHADER_COLOR_CURVE_IDENTITY 0 #define SHADER_COLOR_CURVE_LUT_3x1D 1 /* enum gl_shader_color_mapping */ #define SHADER_COLOR_MAPPING_IDENTITY 0 #define SHADER_COLOR_MAPPING_3DLUT 1 #if DEF_VARIANT == SHADER_VARIANT_EXTERNAL #extension GL_OES_EGL_image_external : require #endif #if DEF_COLOR_MAPPING == SHADER_COLOR_MAPPING_3DLUT #extension GL_OES_texture_3D : require #endif #ifdef GL_FRAGMENT_PRECISION_HIGH #define HIGHPRECISION highp #else #define HIGHPRECISION mediump #endif precision HIGHPRECISION float; /* * These undeclared identifiers will be #defined by a runtime generated code * snippet. */ compile_const int c_variant = DEF_VARIANT; compile_const bool c_input_is_premult = DEF_INPUT_IS_PREMULT; compile_const bool c_green_tint = DEF_GREEN_TINT; compile_const int c_color_pre_curve = DEF_COLOR_PRE_CURVE; compile_const int c_color_mapping = DEF_COLOR_MAPPING; compile_const bool c_need_color_pipeline = c_color_pre_curve != SHADER_COLOR_CURVE_IDENTITY || c_color_mapping != SHADER_COLOR_MAPPING_IDENTITY; compile_const bool c_need_color_pipeline = c_color_pre_curve != SHADER_COLOR_CURVE_IDENTITY; vec4 yuva2rgba(vec4 yuva) { vec4 color_out; float Y, su, sv; /* ITU-R BT.601 & BT.709 quantization (limited range) */ /* Y = 255/219 * (x - 16/256) */ Y = 1.16438356 * (yuva.x - 0.0625); /* Remove offset 128/256, but the 255/224 multiplier comes later */ su = yuva.y - 0.5; sv = yuva.z - 0.5; /* * ITU-R BT.601 encoding coefficients (inverse), with the * 255/224 limited range multiplier already included in the * factors for su (Cb) and sv (Cr). */ color_out.r = Y + 1.59602678 * sv; color_out.g = Y - 0.39176229 * su - 0.81296764 * sv; color_out.b = Y + 2.01723214 * su; color_out.a = yuva.w; return color_out; } #if DEF_VARIANT == SHADER_VARIANT_EXTERNAL uniform samplerExternalOES tex; #else uniform sampler2D tex; #endif varying vec2 v_texcoord; uniform sampler2D tex1; uniform sampler2D tex2; uniform float view_alpha; uniform vec4 unicolor; uniform HIGHPRECISION sampler2D color_pre_curve_lut_2d; uniform HIGHPRECISION vec2 color_pre_curve_lut_scale_offset; #if DEF_COLOR_MAPPING == SHADER_COLOR_MAPPING_3DLUT uniform HIGHPRECISION sampler3D color_mapping_lut_3d; uniform HIGHPRECISION vec2 color_mapping_lut_scale_offset; #endif vec4 sample_input_texture() { vec4 yuva = vec4(0.0, 0.0, 0.0, 1.0); /* Producing RGBA directly */ if (c_variant == SHADER_VARIANT_SOLID) return unicolor; if (c_variant == SHADER_VARIANT_RGBA || c_variant == SHADER_VARIANT_EXTERNAL) { return texture2D(tex, v_texcoord); } if (c_variant == SHADER_VARIANT_RGBX) return vec4(texture2D(tex, v_texcoord).rgb, 1.0); /* Requires conversion to RGBA */ if (c_variant == SHADER_VARIANT_Y_U_V) { yuva.x = texture2D(tex, v_texcoord).x; yuva.y = texture2D(tex1, v_texcoord).x; yuva.z = texture2D(tex2, v_texcoord).x; } else if (c_variant == SHADER_VARIANT_Y_UV) { yuva.x = texture2D(tex, v_texcoord).x; yuva.yz = texture2D(tex1, v_texcoord).rg; } else if (c_variant == SHADER_VARIANT_Y_XUXV) { yuva.x = texture2D(tex, v_texcoord).x; yuva.yz = texture2D(tex1, v_texcoord).ga; } else if (c_variant == SHADER_VARIANT_XYUV) { yuva.xyz = texture2D(tex, v_texcoord).bgr; } else { /* Never reached, bad variant value. */ return vec4(1.0, 0.3, 1.0, 1.0); } return yuva2rgba(yuva); } /* * Texture coordinates go from 0.0 to 1.0 corresponding to texture edges. * When we do LUT look-ups with linear filtering, the correct range to sample * from is not from edge to edge, but center of first texel to center of last * texel. This follows because with LUTs, you have the exact end points given, * you never extrapolate but only interpolate. * The scale and offset are precomputed to achieve this mapping. */ float lut_texcoord(float x, vec2 scale_offset) { return x * scale_offset.s + scale_offset.t; } vec3 lut_texcoord(vec3 pos, vec2 scale_offset) { return pos * scale_offset.s + scale_offset.t; } /* * Sample a 1D LUT which is a single row of a 2D texture. The 2D texture has * four rows so that the centers of texels have precise y-coordinates. */ float sample_color_pre_curve_lut_2d(float x, compile_const int row) { float tx = lut_texcoord(x, color_pre_curve_lut_scale_offset); return texture2D(color_pre_curve_lut_2d, vec2(tx, (float(row) + 0.5) / 4.0)).x; } vec3 color_pre_curve(vec3 color) { vec3 ret; if (c_color_pre_curve == SHADER_COLOR_CURVE_IDENTITY) { return color; } else if (c_color_pre_curve == SHADER_COLOR_CURVE_LUT_3x1D) { ret.r = sample_color_pre_curve_lut_2d(color.r, 0); ret.g = sample_color_pre_curve_lut_2d(color.g, 1); ret.b = sample_color_pre_curve_lut_2d(color.b, 2); return ret; } else { /* Never reached, bad c_color_pre_curve. */ return vec3(1.0, 0.3, 1.0); } } vec3 sample_color_mapping_lut_3d(vec3 color) { vec3 pos, ret = vec3(0.0, 0.0, 0.0); #if DEF_COLOR_MAPPING == SHADER_COLOR_MAPPING_3DLUT pos = lut_texcoord(color, color_mapping_lut_scale_offset); ret = texture3D(color_mapping_lut_3d, pos).rgb; #endif return ret; } vec3 color_mapping(vec3 color) { if (c_color_mapping == SHADER_COLOR_MAPPING_IDENTITY) return color; else if (c_color_mapping == SHADER_COLOR_MAPPING_3DLUT) return sample_color_mapping_lut_3d(color); else /* Never reached, bad c_color_mapping. */ return vec3(1.0, 0.3, 1.0); } vec4 color_pipeline(vec4 color) { /* Ensure straight alpha */ if (c_input_is_premult) { if (color.a == 0.0) color.rgb = vec3(0, 0, 0); else color.rgb *= 1.0 / color.a; } color.rgb = color_pre_curve(color.rgb); color.rgb = color_mapping(color.rgb); return color; } void main() { vec4 color; /* Electrical (non-linear) RGBA values, may be premult or not */ color = sample_input_texture(); if (c_need_color_pipeline) color = color_pipeline(color); /* Produces straight alpha */ /* Ensure pre-multiplied for blending */ if (!c_input_is_premult || c_need_color_pipeline) color.rgb *= color.a; color *= view_alpha; if (c_green_tint) color = vec4(0.0, 0.3, 0.0, 0.2) + color * 0.8; gl_FragColor = color; }