/* * Copyright © 2011 Intel Corporation * Copyright © 2012 Collabora, Ltd. * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of the copyright holders not be used in * advertising or publicity pertaining to distribution of the software * without specific, written prior permission. The copyright holders make * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "matrix.h" /* * Matrices are stored in column-major order, that is the array indices are: * 0 4 8 12 * 1 5 9 13 * 2 6 10 14 * 3 7 11 15 */ WL_EXPORT void weston_matrix_init(struct weston_matrix *matrix) { static const struct weston_matrix identity = { { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 } }; memcpy(matrix, &identity, sizeof identity); } /* m <- n * m, that is, m is multiplied on the LEFT. */ WL_EXPORT void weston_matrix_multiply(struct weston_matrix *m, const struct weston_matrix *n) { struct weston_matrix tmp; const float *row, *column; div_t d; int i, j; for (i = 0; i < 16; i++) { tmp.d[i] = 0; d = div(i, 4); row = m->d + d.quot * 4; column = n->d + d.rem; for (j = 0; j < 4; j++) tmp.d[i] += row[j] * column[j * 4]; } memcpy(m, &tmp, sizeof tmp); } WL_EXPORT void weston_matrix_translate(struct weston_matrix *matrix, float x, float y, float z) { struct weston_matrix translate = { { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 } }; weston_matrix_multiply(matrix, &translate); } WL_EXPORT void weston_matrix_scale(struct weston_matrix *matrix, float x, float y,float z) { struct weston_matrix scale = { { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 } }; weston_matrix_multiply(matrix, &scale); } /* v <- m * v */ WL_EXPORT void weston_matrix_transform(struct weston_matrix *matrix, struct weston_vector *v) { int i, j; struct weston_vector t; for (i = 0; i < 4; i++) { t.f[i] = 0; for (j = 0; j < 4; j++) t.f[i] += v->f[j] * matrix->d[i + j * 4]; } *v = t; } static inline void swap_rows(double *a, double *b) { unsigned k; double tmp; for (k = 0; k < 13; k += 4) { tmp = a[k]; a[k] = b[k]; b[k] = tmp; } } static inline void swap_unsigned(unsigned *a, unsigned *b) { unsigned tmp; tmp = *a; *a = *b; *b = tmp; } static inline unsigned find_pivot(double *column, unsigned k) { unsigned p = k; for (++k; k < 4; ++k) if (fabs(column[p]) < fabs(column[k])) p = k; return p; } /* * reference: Gene H. Golub and Charles F. van Loan. Matrix computations. * 3rd ed. The Johns Hopkins University Press. 1996. * LU decomposition, forward and back substitution: Chapter 3. */ MATRIX_TEST_EXPORT inline int matrix_invert(double *A, unsigned *p, const struct weston_matrix *matrix) { unsigned i, j, k; unsigned pivot; double pv; for (i = 0; i < 4; ++i) p[i] = i; for (i = 16; i--; ) A[i] = matrix->d[i]; /* LU decomposition with partial pivoting */ for (k = 0; k < 4; ++k) { pivot = find_pivot(&A[k * 4], k); if (pivot != k) { swap_unsigned(&p[k], &p[pivot]); swap_rows(&A[k], &A[pivot]); } pv = A[k * 4 + k]; if (fabs(pv) < 1e-9) return -1; /* zero pivot, not invertible */ for (i = k + 1; i < 4; ++i) { A[i + k * 4] /= pv; for (j = k + 1; j < 4; ++j) A[i + j * 4] -= A[i + k * 4] * A[k + j * 4]; } } return 0; } MATRIX_TEST_EXPORT inline void inverse_transform(const double *LU, const unsigned *p, float *v) { /* Solve A * x = v, when we have P * A = L * U. * P * A * x = P * v => L * U * x = P * v * Let U * x = b, then L * b = P * v. */ double b[4]; unsigned j; /* Forward substitution, column version, solves L * b = P * v */ /* The diagonal of L is all ones, and not explicitly stored. */ b[0] = v[p[0]]; b[1] = (double)v[p[1]] - b[0] * LU[1 + 0 * 4]; b[2] = (double)v[p[2]] - b[0] * LU[2 + 0 * 4]; b[3] = (double)v[p[3]] - b[0] * LU[3 + 0 * 4]; b[2] -= b[1] * LU[2 + 1 * 4]; b[3] -= b[1] * LU[3 + 1 * 4]; b[3] -= b[2] * LU[3 + 2 * 4]; /* backward substitution, column version, solves U * y = b */ #if 1 /* hand-unrolled, 25% faster for whole function */ b[3] /= LU[3 + 3 * 4]; b[0] -= b[3] * LU[0 + 3 * 4]; b[1] -= b[3] * LU[1 + 3 * 4]; b[2] -= b[3] * LU[2 + 3 * 4]; b[2] /= LU[2 + 2 * 4]; b[0] -= b[2] * LU[0 + 2 * 4]; b[1] -= b[2] * LU[1 + 2 * 4]; b[1] /= LU[1 + 1 * 4]; b[0] -= b[1] * LU[0 + 1 * 4]; b[0] /= LU[0 + 0 * 4]; #else for (j = 3; j > 0; --j) { unsigned k; b[j] /= LU[j + j * 4]; for (k = 0; k < j; ++k) b[k] -= b[j] * LU[k + j * 4]; } b[0] /= LU[0 + 0 * 4]; #endif /* the result */ for (j = 0; j < 4; ++j) v[j] = b[j]; } WL_EXPORT int weston_matrix_invert(struct weston_matrix *inverse, const struct weston_matrix *matrix) { double LU[16]; /* column-major */ unsigned perm[4]; /* permutation */ unsigned c; if (matrix_invert(LU, perm, matrix) < 0) return -1; weston_matrix_init(inverse); for (c = 0; c < 4; ++c) inverse_transform(LU, perm, &inverse->d[c * 4]); return 0; }