Copyright © 2008-2013 Kristian Høgsberg
Copyright © 2013 Rafael Antognolli
Copyright © 2013 Jasper St. Pierre
Copyright © 2010-2013 Intel Corporation
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
the copyright holders not be used in advertising or publicity
pertaining to distribution of the software without specific,
written prior permission. The copyright holders make no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied
warranty.
THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
This interface is implemented by servers that provide
desktop-style user interfaces.
It allows clients to associate a xdg_surface with
a basic surface.
Use this enum to check the protocol version, and it will be updated
automatically.
Use this request in order to enable use of this interface.
Understand and agree that one is using an unstable interface,
that will likely change in the future, breaking the API.
Create a shell surface for an existing surface.
Only one shell or popup surface can be associated with a given
surface.
Create a popup surface for an existing surface.
Only one shell or popup surface can be associated with a given
surface.
The ping event asks the client if it's still alive. Pass the
serial specified in the event back to the compositor by sending
a "pong" request back with the specified serial.
Compositors can use this to determine if the client is still
alive. It's unspecified what will happen if the client doesn't
respond to the ping request, or in what timeframe. Clients should
try to respond in a reasonable amount of time.
A client must respond to a ping event with a pong request or
the client may be deemed unresponsive.
An interface that may be implemented by a wl_surface, for
implementations that provide a desktop-style user interface.
It provides requests to treat surfaces like windows, allowing to set
properties like maximized, fullscreen, minimized, and to move and resize
them, and associate metadata like title and app id.
On the server side the object is automatically destroyed when
the related wl_surface is destroyed. On client side,
xdg_surface.destroy() must be called before destroying
the wl_surface object.
The xdg_surface interface is removed from the wl_surface object
that was turned into a xdg_surface with
xdg_shell.get_xdg_surface request. The xdg_surface properties,
like maximized and fullscreen, are lost. The wl_surface loses
its role as a xdg_surface. The wl_surface is unmapped.
Setting a surface as transient of another means that it is child
of another surface.
Child surfaces are stacked above their parents, and will be
unmapped if the parent is unmapped too. They should not appear
on task bars and alt+tab.
This tells the compositor what the visible size of the window
should be, so it can use it to determine what borders to use for
constrainment and alignment.
CSD often has invisible areas for decoration purposes, like drop
shadows. These "shadow" drawings need to be subtracted out of the
normal boundaries of the window when computing where to place
windows (e.g. to set this window so it's centered on top of another,
or to put it to the left or right of the screen.)
This value should change as little as possible at runtime, to
prevent flicker.
This value is also ignored when the window is maximized or
fullscreen, and assumed to be 0.
If never called, this value is assumed to be 0.
Set a short title for the surface.
This string may be used to identify the surface in a task bar,
window list, or other user interface elements provided by the
compositor.
The string must be encoded in UTF-8.
Set an id for the surface.
The app id identifies the general class of applications to which
the surface belongs.
It should be the ID that appears in the new desktop entry
specification, the interface name.
Start a pointer-driven move of the surface.
This request must be used in response to a button press event.
The server may ignore move requests depending on the state of
the surface (e.g. fullscreen or maximized).
These values are used to indicate which edge of a surface
is being dragged in a resize operation. The server may
use this information to adapt its behavior, e.g. choose
an appropriate cursor image.
Start a pointer-driven resizing of the surface.
This request must be used in response to a button press event.
The server may ignore resize requests depending on the state of
the surface (e.g. fullscreen or maximized).
The configure event asks the client to resize its surface.
The size is a hint, in the sense that the client is free to
ignore it if it doesn't resize, pick a smaller size (to
satisfy aspect ratio or resize in steps of NxM pixels).
The client is free to dismiss all but the last configure
event it received.
The width and height arguments specify the size of the window
in surface local coordinates.
Set the default output used by this surface when it is first mapped.
If this value is NULL (default), it's up to the compositor to choose
which display will be used to map this surface.
When fullscreen or maximized state are set on this surface, and it
wasn't mapped yet, the output set with this method will be used.
Otherwise, the output where the surface is currently mapped will be
used.
Event sent from the compositor to the client requesting that the client
goes to a fullscreen state. It's the client job to call set_fullscreen
and really trigger the fullscreen state.
Event sent from the compositor to the client requesting that the client
leaves the fullscreen state. It's the client job to call
unset_fullscreen and really leave the fullscreen state.
Set the surface as fullscreen.
After this request, the compositor should send a configure event
informing the output size.
This request informs the compositor that the next attached buffer
committed will be in a fullscreen state. The buffer size should be the
same size as the size informed in the configure event, if the client
doesn't want to leave any empty area.
In other words: the next attached buffer after set_maximized is the new
maximized buffer. And the surface will be positioned at the maximized
position on commit.
A simple way to synchronize and wait for the correct configure event is
to use a wl_display.sync request right after the set_fullscreen
request. When the sync callback returns, the last configure event
received just before it will be the correct one, and should contain the
right size for the surface to maximize.
Setting one state won't unset another state. Use
xdg_surface.unset_fullscreen for unsetting it.
Unset the surface fullscreen state.
Same negotiation as set_fullscreen must be used.
Event sent from the compositor to the client requesting that the client
goes to a maximized state. It's the client job to call set_maximized
and really trigger the maximized state.
Event sent from the compositor to the client requesting that the client
leaves the maximized state. It's the client job to call unset_maximized
and really leave the maximized state.
Set the surface as maximized.
After this request, the compositor will send a configure event
informing the output size minus panel and other MW decorations.
This request informs the compositor that the next attached buffer
committed will be in a maximized state. The buffer size should be the
same size as the size informed in the configure event, if the client
doesn't want to leave any empty area.
In other words: the next attached buffer after set_maximized is the new
maximized buffer. And the surface will be positioned at the maximized
position on commit.
A simple way to synchronize and wait for the correct configure event is
to use a wl_display.sync request right after the set_maximized request.
When the sync callback returns, the last configure event received just
before it will be the correct one, and should contain the right size
for the surface to maximize.
Setting one state won't unset another state. Use
xdg_surface.unset_maximized for unsetting it.
Unset the surface maximized state.
Same negotiation as set_maximized must be used.
Set the surface minimized state.
Setting one state won't unset another state.
The activated_set event is sent when this surface has been
activated, which means that the surface has user attention.
Window decorations should be updated accordingly. You should
not use this event for anything but the style of decorations
you display, use wl_keyboard.enter and wl_keyboard.leave for
determining keyboard focus.
The deactivate event is sent when this surface has been
deactivated, which means that the surface lost user attention.
Window decorations should be updated accordingly. You should
not use this event for anything but the style of decorations
you display, use wl_keyboard.enter and wl_keyboard.leave for
determining keyboard focus.
The delete event is sent by the compositor when the user
wants the surface to be closed. This should be equivalent to
the user clicking the close button in client-side decorations,
if your application has any...
This is only a request that the user intends to close your
window. The client may choose to ignore this request, or show
a dialog to ask the user to save their data...
An interface that may be implemented by a wl_surface, for
implementations that provide a desktop-style popups/menus. A popup
surface is a transient surface with an added pointer grab.
An existing implicit grab will be changed to owner-events mode,
and the popup grab will continue after the implicit grab ends
(i.e. releasing the mouse button does not cause the popup to be
unmapped).
The popup grab continues until the window is destroyed or a mouse
button is pressed in any other clients window. A click in any of
the clients surfaces is reported as normal, however, clicks in
other clients surfaces will be discarded and trigger the callback.
The x and y arguments specify the locations of the upper left
corner of the surface relative to the upper left corner of the
parent surface, in surface local coordinates.
xdg_popup surfaces are always transient for another surface.
The xdg_surface interface is removed from the wl_surface object
that was turned into a xdg_surface with
xdg_shell.get_xdg_surface request. The xdg_surface properties,
like maximized and fullscreen, are lost. The wl_surface loses
its role as a xdg_surface. The wl_surface is unmapped.
The popup_done event is sent out when a popup grab is broken,
that is, when the users clicks a surface that doesn't belong
to the client owning the popup surface.