Core wayland protocol - glyph cache - dnd, figure out large object transfer: through wayland protocol or pass an fd through the compositor to the other client and let them sort it out? - copy-n-paste, store data in server (only one mime-type available) or do X style (content mime-type negotiation, but data goes away when client quits). - protocol for setting the cursor image - should we have a mechanism to attach surface to cursor for guaranteed non-laggy drag? - drawing cursors, moving them, cursor themes, attaching surfaces to cursors. How do you change cursors when you mouse over a text field if you don't have subwindows? This is what we do: a client can set a cursor for a surface and wayland will set that on enter and revert to default on leave - Discard buffer, as in "wayland discarded your buffer, it's no longer visible, you can stop updating it now.", reattach, as in "oh hey, I'm about to show your buffer that I threw away, what was it again?". for wayland system compositor vt switcing, for example, to be able to throw away the surfaces in the session we're switching away from. for minimized windows that we don't want live thumb nails for. etc. - Consolidate drm buffer upload with a create_buffer request, returns buffer object we can use in surface.attach, cache.upload and input.attach? Will increase object id usage significantly, each buffer swap allocates and throws away a new id. Does consolidate the details of a buffer very nicely though. compositor.create_buffer(new_id, visual, name, stride, width, height) surface.attach(buffer) cache.upload(buffer, x, y, width, height) input.set_cursor(buffer, hotspot_x, hotspot_y) Doesn't increase id usage too much, can keep buffers around. - Move/resize protocol in the style of the dnd protocol: a surface who has a grabbed device can send a request to initiate a resize(top/bottom+rigth/left) or a move. The compositor will then resize or move the window and take into account windows, panels and screen edges and constrain and snap the motion accordingly. As the cursor moves, the compositor sends resize or move (maybe not move events?) events to the app, which responds by attaching a new surface at the new size (optionally, reducing the allocated space to satisfy aspect ratio or resize increments). - Initial placement of surfaces. Guess we can do, 1) surface-relative (menus), 2) pointer-relative (tooltips and right-click menus) or 3) server-decides (all other top-levels). - When a surface is the size of the screen and on top, we can set the scanout buffer to that surface directly. Like compiz unredirect top-level window feature. Except it won't have any protocol state side-effects and the client that owns the surface won't know. We lose control of updates. Should work well for X server root window under wayland. Should be possible for yuv overlays as well. - what about cursors then? maybe use hw cursors if the cursor satisfies hw limitations (64x64, only one cursor), switch to composited cursors if not. - clients needs to allocate the surface to be suitable for scanout, which they can do whenever they go fullscreen. - multihead, screen geometry and crtc layout protocol, hotplug - input device discovery, hotplug - Advertise axes as part of the discovery, use something like "org.wayland.input.x" to identify the axes. - keyboard state, layout events at connect time and when it changes, keyboard leds - relative events - multi touch? - synaptics, 3-button emulation, scim - sparse/gcc plugin based idl compiler - crack? - xml based description instead? - actually make batch/commit batch up commands - auth; We need to generate a random socket name and advertise that on dbus along with a connection cookie. Something like a method that returns the socket name and a connection cookie. The connection cookie is just another random string that the client must pass to the wayland server to become authenticated. The Wayland server generates the cookie on demand when the dbus method is called and expires it after 5s or so. - or just pass the fd over dbus - drm bo access control, authentication, flink_to - Range protocol may not be sufficient... if a server cycles through 2^32 object IDs we don't have a way to handle wrapping. And since we hand out a range of 256 IDs to each new clients, we're just talking about 2^24 clients. That's 31 years with a new client every minute... Maybe just use bigger ranges, then it's feasible to track and garbage collect them when a client dies. - Add protocol to let applications specify the effective/logical surface rectangle, that is, the edge of the window, ignoring drop shadows and other padding. The compositor needs this for snapping and constraining window motion. Also, maybe communicate the opaque region of the window (or just a conservative, simple estimate), to let the compositor reduce overdraw. - multi gpu, needs queue and seqno to wait on in requests Clients and ports - port gtk+ - eek, so much X legacy stuff there... - draw window decorations in gtkwindow.c - start from alexl's client-side-windows branch - Details about pointer grabs. wayland doesn't have active grabs, menus will behave subtly different. Under X, clicking a menu open grabs the pointer and clicking outside the window pops down the menu and swallows the click. without active grabs we can't swallow the click. I'm sure there much more... - Port Qt? There's already talk about this on the list. - X on Wayland - move most of the code from xf86-video-intel into a Xorg wayland module. - don't ask KMS for available output and modes, use the info from the wayland server. then stop mooching off of drmmode.c. - map multiple wayland input devices to MPX in Xorg. - rootless; avoid allocating and setting the front buffer, draw window decorations in the X server (!), how to map input? - gnome-shell as a wayland session compositor - runs as a client of the wayland session compositor, uses clutter+egl on wayland - talks to an Xorg server as the compositing and window manager for that server and renders the output to a wayland surface. the Xorg server should be modified to take input from the system compositor through gnome-shell, but not allocate a front buffer. - make gnome-shell itself a nested wayland server and allow native wayland clients to connect and can native wayland windows with the windows from the X server. - qemu as a wayland client; session surface as X case - qemu has too simple acceleration, so a Wayland backend like the SDL/VNC ones it has now is trivial. - paravirt: forward wayland screen info as mmio, expose gem ioctls as mmio - mapping vmem is tricky, should try to only use ioctl (pwrite+pread) - not useful for Windows without a windows paravirt driver. - two approaches: 1) do a toplevel qemu window, or 2) expose a wayland server in the guest that forwards to the host wayland server, ie a "remote" compositor, but with the gem buffers shared. could do a wl_connection directly on mmio memory, with head and tail pointers. use an alloc_head register to indicate desired data to write, if it overwrites tail, block guest. just a socket would be easier. - moblin as a wayland compositor - clutter as a wayland compositors - argh, mutter