You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
weston/wcap/vpxenc.c

2664 lines
80 KiB

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* This is a simple program that encodes YV12 files and generates ivf
* files using the new interface.
*/
#if defined(_WIN32) || !CONFIG_OS_SUPPORT
#define USE_POSIX_MMAP 0
#else
#define USE_POSIX_MMAP 1
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include "vpx/vpx_encoder.h"
#if USE_POSIX_MMAP
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#endif
#include "vpx/vp8cx.h"
#include "mem_ops.h"
#include "vpx_timer.h"
#include "tools_common.h"
#include "y4minput.h"
#include "EbmlWriter.h"
#include "EbmlIDs.h"
#include "wcap-decode.h"
/* Need special handling of these functions on Windows */
#if defined(_MSC_VER)
/* MSVS doesn't define off_t, and uses _f{seek,tell}i64 */
typedef __int64 off_t;
#define fseeko _fseeki64
#define ftello _ftelli64
#elif defined(_WIN32)
/* MinGW defines off_t as long
and uses f{seek,tell}o64/off64_t for large files */
#define fseeko fseeko64
#define ftello ftello64
#define off_t off64_t
#endif
#if defined(_MSC_VER)
#define LITERALU64(n) n
#else
#define LITERALU64(n) n##LLU
#endif
/* We should use 32-bit file operations in WebM file format
* when building ARM executable file (.axf) with RVCT */
#if !CONFIG_OS_SUPPORT
typedef long off_t;
#define fseeko fseek
#define ftello ftell
#endif
static const char *exec_name;
static const struct codec_item
{
char const *name;
const vpx_codec_iface_t *iface;
unsigned int fourcc;
} codecs[] =
{
#if CONFIG_VP8_ENCODER
{"vp8", &vpx_codec_vp8_cx_algo, 0x30385056},
#endif
};
static void usage_exit();
#define LOG_ERROR(label) do \
{\
const char *l=label;\
va_list ap;\
va_start(ap, fmt);\
if(l)\
fprintf(stderr, "%s: ", l);\
vfprintf(stderr, fmt, ap);\
fprintf(stderr, "\n");\
va_end(ap);\
} while(0)
void die(const char *fmt, ...)
{
LOG_ERROR(NULL);
usage_exit();
}
void fatal(const char *fmt, ...)
{
LOG_ERROR("Fatal");
exit(EXIT_FAILURE);
}
void warn(const char *fmt, ...)
{
LOG_ERROR("Warning");
}
static void ctx_exit_on_error(vpx_codec_ctx_t *ctx, const char *s, ...)
{
va_list ap;
va_start(ap, s);
if (ctx->err)
{
const char *detail = vpx_codec_error_detail(ctx);
vfprintf(stderr, s, ap);
fprintf(stderr, ": %s\n", vpx_codec_error(ctx));
if (detail)
fprintf(stderr, " %s\n", detail);
exit(EXIT_FAILURE);
}
}
/* This structure is used to abstract the different ways of handling
* first pass statistics.
*/
typedef struct
{
vpx_fixed_buf_t buf;
int pass;
FILE *file;
char *buf_ptr;
size_t buf_alloc_sz;
} stats_io_t;
int stats_open_file(stats_io_t *stats, const char *fpf, int pass)
{
int res;
stats->pass = pass;
if (pass == 0)
{
stats->file = fopen(fpf, "wb");
stats->buf.sz = 0;
stats->buf.buf = NULL,
res = (stats->file != NULL);
}
else
{
#if 0
#elif USE_POSIX_MMAP
struct stat stat_buf;
int fd;
fd = open(fpf, O_RDONLY);
stats->file = fdopen(fd, "rb");
fstat(fd, &stat_buf);
stats->buf.sz = stat_buf.st_size;
stats->buf.buf = mmap(NULL, stats->buf.sz, PROT_READ, MAP_PRIVATE,
fd, 0);
res = (stats->buf.buf != NULL);
#else
size_t nbytes;
stats->file = fopen(fpf, "rb");
if (fseek(stats->file, 0, SEEK_END))
fatal("First-pass stats file must be seekable!");
stats->buf.sz = stats->buf_alloc_sz = ftell(stats->file);
rewind(stats->file);
stats->buf.buf = malloc(stats->buf_alloc_sz);
if (!stats->buf.buf)
fatal("Failed to allocate first-pass stats buffer (%lu bytes)",
(unsigned long)stats->buf_alloc_sz);
nbytes = fread(stats->buf.buf, 1, stats->buf.sz, stats->file);
res = (nbytes == stats->buf.sz);
#endif
}
return res;
}
int stats_open_mem(stats_io_t *stats, int pass)
{
int res;
stats->pass = pass;
if (!pass)
{
stats->buf.sz = 0;
stats->buf_alloc_sz = 64 * 1024;
stats->buf.buf = malloc(stats->buf_alloc_sz);
}
stats->buf_ptr = stats->buf.buf;
res = (stats->buf.buf != NULL);
return res;
}
void stats_close(stats_io_t *stats, int last_pass)
{
if (stats->file)
{
if (stats->pass == last_pass)
{
#if 0
#elif USE_POSIX_MMAP
munmap(stats->buf.buf, stats->buf.sz);
#else
free(stats->buf.buf);
#endif
}
fclose(stats->file);
stats->file = NULL;
}
else
{
if (stats->pass == last_pass)
free(stats->buf.buf);
}
}
void stats_write(stats_io_t *stats, const void *pkt, size_t len)
{
if (stats->file)
{
if(fwrite(pkt, 1, len, stats->file));
}
else
{
if (stats->buf.sz + len > stats->buf_alloc_sz)
{
size_t new_sz = stats->buf_alloc_sz + 64 * 1024;
char *new_ptr = realloc(stats->buf.buf, new_sz);
if (new_ptr)
{
stats->buf_ptr = new_ptr + (stats->buf_ptr - (char *)stats->buf.buf);
stats->buf.buf = new_ptr;
stats->buf_alloc_sz = new_sz;
}
else
fatal("Failed to realloc firstpass stats buffer.");
}
memcpy(stats->buf_ptr, pkt, len);
stats->buf.sz += len;
stats->buf_ptr += len;
}
}
vpx_fixed_buf_t stats_get(stats_io_t *stats)
{
return stats->buf;
}
/* Stereo 3D packed frame format */
typedef enum stereo_format
{
STEREO_FORMAT_MONO = 0,
STEREO_FORMAT_LEFT_RIGHT = 1,
STEREO_FORMAT_BOTTOM_TOP = 2,
STEREO_FORMAT_TOP_BOTTOM = 3,
STEREO_FORMAT_RIGHT_LEFT = 11
} stereo_format_t;
enum video_file_type
{
FILE_TYPE_RAW,
FILE_TYPE_IVF,
FILE_TYPE_Y4M,
FILE_TYPE_WCAP
};
struct detect_buffer {
char buf[4];
size_t buf_read;
size_t position;
};
struct input_state
{
char *fn;
FILE *file;
y4m_input y4m;
struct detect_buffer detect;
enum video_file_type file_type;
unsigned int w;
unsigned int h;
struct vpx_rational framerate;
int use_i420;
struct wcap_decoder *wcap;
uint32_t output_msecs;
struct vpx_rational output_framerate;
};
static inline int rgb_to_yuv(uint32_t format, uint32_t p, int *u, int *v)
{
int r, g, b, y;
switch (format) {
case WCAP_FORMAT_XRGB8888:
r = (p >> 16) & 0xff;
g = (p >> 8) & 0xff;
b = (p >> 0) & 0xff;
break;
case WCAP_FORMAT_XBGR8888:
r = (p >> 0) & 0xff;
g = (p >> 8) & 0xff;
b = (p >> 16) & 0xff;
break;
}
y = (19595 * r + 38469 * g + 7472 * b) >> 16;
if (y > 255)
y = 255;
*u += 46727 * (r - y);
*v += 36962 * (b - y);
return y;
}
static inline int clamp_uv(int u)
{
int clamp = (u >> 18) + 128;
if (clamp < 0)
return 0;
else if (clamp > 255)
return 255;
else
return clamp;
}
void convert_to_yv12(struct wcap_decoder *wcap, vpx_image_t *img)
{
unsigned char *y1, *y2, *u, *v;
uint32_t *p1, *p2, *end;
int i, u_accum, v_accum;
uint32_t format = wcap->format;
for (i = 0; i < wcap->height; i += 2) {
y1 = img->planes[0] + img->stride[0] * i;
y2 = img->planes[0] + img->stride[0] * i + img->stride[0];
u = img->planes[2] + img->stride[2] * i / 2;
v = img->planes[1] + img->stride[1] * i / 2;
p1 = wcap->frame + wcap->width * i;
p2 = wcap->frame + wcap->width * i + wcap->width;
end = p1 + wcap->width;
while (p1 < end) {
u_accum = 0;
v_accum = 0;
y1[0] = rgb_to_yuv(format, p1[0], &u_accum, &v_accum);
y1[1] = rgb_to_yuv(format, p1[1], &u_accum, &v_accum);
y2[0] = rgb_to_yuv(format, p2[0], &u_accum, &v_accum);
y2[1] = rgb_to_yuv(format, p2[1], &u_accum, &v_accum);
u[0] = clamp_uv(u_accum);
v[0] = clamp_uv(v_accum);
y1 += 2;
p1 += 2;
y2 += 2;
p2 += 2;
u++;
v++;
}
}
}
#define IVF_FRAME_HDR_SZ (4+8) /* 4 byte size + 8 byte timestamp */
static int read_frame(struct input_state *input, vpx_image_t *img)
{
FILE *f = input->file;
enum video_file_type file_type = input->file_type;
y4m_input *y4m = &input->y4m;
struct detect_buffer *detect = &input->detect;
int plane = 0;
int shortread = 0;
if (file_type == FILE_TYPE_Y4M)
{
if (y4m_input_fetch_frame(y4m, f, img) < 1)
return 0;
}
else if (file_type == FILE_TYPE_WCAP)
{
if (input->wcap->count == 0) {
wcap_decoder_get_frame(input->wcap);
input->output_msecs = input->wcap->msecs;
}
while (input->output_msecs - input->wcap->msecs < INT32_MAX)
if (!wcap_decoder_get_frame(input->wcap))
return 0;
convert_to_yv12(input->wcap, img);
input->output_msecs +=
input->framerate.den * 1000 / input->framerate.num;
}
else
{
if (file_type == FILE_TYPE_IVF)
{
char junk[IVF_FRAME_HDR_SZ];
/* Skip the frame header. We know how big the frame should be. See
* write_ivf_frame_header() for documentation on the frame header
* layout.
*/
if(fread(junk, 1, IVF_FRAME_HDR_SZ, f));
}
for (plane = 0; plane < 3; plane++)
{
unsigned char *ptr;
int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane)
{
case 1:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12? VPX_PLANE_V : VPX_PLANE_U];
break;
case 2:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12?VPX_PLANE_U : VPX_PLANE_V];
break;
default:
ptr = img->planes[plane];
}
for (r = 0; r < h; r++)
{
size_t needed = w;
size_t buf_position = 0;
const size_t left = detect->buf_read - detect->position;
if (left > 0)
{
const size_t more = (left < needed) ? left : needed;
memcpy(ptr, detect->buf + detect->position, more);
buf_position = more;
needed -= more;
detect->position += more;
}
if (needed > 0)
{
shortread |= (fread(ptr + buf_position, 1, needed, f) < needed);
}
ptr += img->stride[plane];
}
}
}
return !shortread;
}
unsigned int file_is_y4m(FILE *infile,
y4m_input *y4m,
char detect[4])
{
if(memcmp(detect, "YUV4", 4) == 0)
{
return 1;
}
return 0;
}
#define IVF_FILE_HDR_SZ (32)
unsigned int file_is_ivf(struct input_state *input,
unsigned int *fourcc)
{
char raw_hdr[IVF_FILE_HDR_SZ];
int is_ivf = 0;
FILE *infile = input->file;
unsigned int *width = &input->w;
unsigned int *height = &input->h;
struct detect_buffer *detect = &input->detect;
if(memcmp(detect->buf, "DKIF", 4) != 0)
return 0;
/* See write_ivf_file_header() for more documentation on the file header
* layout.
*/
if (fread(raw_hdr + 4, 1, IVF_FILE_HDR_SZ - 4, infile)
== IVF_FILE_HDR_SZ - 4)
{
{
is_ivf = 1;
if (mem_get_le16(raw_hdr + 4) != 0)
warn("Unrecognized IVF version! This file may not decode "
"properly.");
*fourcc = mem_get_le32(raw_hdr + 8);
}
}
if (is_ivf)
{
*width = mem_get_le16(raw_hdr + 12);
*height = mem_get_le16(raw_hdr + 14);
detect->position = 4;
}
return is_ivf;
}
unsigned int file_is_wcap(struct input_state *input)
{
if(mem_get_le32(input->detect.buf) == WCAP_HEADER_MAGIC)
return 1;
return 0;
}
static void write_ivf_file_header(FILE *outfile,
const vpx_codec_enc_cfg_t *cfg,
unsigned int fourcc,
int frame_cnt)
{
char header[32];
if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS)
return;
header[0] = 'D';
header[1] = 'K';
header[2] = 'I';
header[3] = 'F';
mem_put_le16(header + 4, 0); /* version */
mem_put_le16(header + 6, 32); /* headersize */
mem_put_le32(header + 8, fourcc); /* headersize */
mem_put_le16(header + 12, cfg->g_w); /* width */
mem_put_le16(header + 14, cfg->g_h); /* height */
mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */
mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */
mem_put_le32(header + 24, frame_cnt); /* length */
mem_put_le32(header + 28, 0); /* unused */
if(fwrite(header, 1, 32, outfile));
}
static void write_ivf_frame_header(FILE *outfile,
const vpx_codec_cx_pkt_t *pkt)
{
char header[12];
vpx_codec_pts_t pts;
if (pkt->kind != VPX_CODEC_CX_FRAME_PKT)
return;
pts = pkt->data.frame.pts;
mem_put_le32(header, pkt->data.frame.sz);
mem_put_le32(header + 4, pts & 0xFFFFFFFF);
mem_put_le32(header + 8, pts >> 32);
if(fwrite(header, 1, 12, outfile));
}
static void write_ivf_frame_size(FILE *outfile, size_t size)
{
char header[4];
mem_put_le32(header, size);
fwrite(header, 1, 4, outfile);
}
typedef off_t EbmlLoc;
struct cue_entry
{
unsigned int time;
uint64_t loc;
};
struct EbmlGlobal
{
int debug;
FILE *stream;
int64_t last_pts_ms;
vpx_rational_t framerate;
/* These pointers are to the start of an element */
off_t position_reference;
off_t seek_info_pos;
off_t segment_info_pos;
off_t track_pos;
off_t cue_pos;
off_t cluster_pos;
/* This pointer is to a specific element to be serialized */
off_t track_id_pos;
/* These pointers are to the size field of the element */
EbmlLoc startSegment;
EbmlLoc startCluster;
uint32_t cluster_timecode;
int cluster_open;
struct cue_entry *cue_list;
unsigned int cues;
};
void Ebml_Write(EbmlGlobal *glob, const void *buffer_in, unsigned long len)
{
if(fwrite(buffer_in, 1, len, glob->stream));
}
#define WRITE_BUFFER(s) \
for(i = len-1; i>=0; i--)\
{ \
x = *(const s *)buffer_in >> (i * CHAR_BIT); \
Ebml_Write(glob, &x, 1); \
}
void Ebml_Serialize(EbmlGlobal *glob, const void *buffer_in, int buffer_size, unsigned long len)
{
char x;
int i;
/* buffer_size:
* 1 - int8_t;
* 2 - int16_t;
* 3 - int32_t;
* 4 - int64_t;
*/
switch (buffer_size)
{
case 1:
WRITE_BUFFER(int8_t)
break;
case 2:
WRITE_BUFFER(int16_t)
break;
case 4:
WRITE_BUFFER(int32_t)
break;
case 8:
WRITE_BUFFER(int64_t)
break;
default:
break;
}
}
#undef WRITE_BUFFER
/* Need a fixed size serializer for the track ID. libmkv provides a 64 bit
* one, but not a 32 bit one.
*/
static void Ebml_SerializeUnsigned32(EbmlGlobal *glob, unsigned long class_id, uint64_t ui)
{
unsigned char sizeSerialized = 4 | 0x80;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1);
Ebml_Serialize(glob, &ui, sizeof(ui), 4);
}
static void
Ebml_StartSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc,
unsigned long class_id)
{
//todo this is always taking 8 bytes, this may need later optimization
//this is a key that says length unknown
uint64_t unknownLen = LITERALU64(0x01FFFFFFFFFFFFFF);
Ebml_WriteID(glob, class_id);
*ebmlLoc = ftello(glob->stream);
Ebml_Serialize(glob, &unknownLen, sizeof(unknownLen), 8);
}
static void
Ebml_EndSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc)
{
off_t pos;
uint64_t size;
/* Save the current stream pointer */
pos = ftello(glob->stream);
/* Calculate the size of this element */
size = pos - *ebmlLoc - 8;
size |= LITERALU64(0x0100000000000000);
/* Seek back to the beginning of the element and write the new size */
fseeko(glob->stream, *ebmlLoc, SEEK_SET);
Ebml_Serialize(glob, &size, sizeof(size), 8);
/* Reset the stream pointer */
fseeko(glob->stream, pos, SEEK_SET);
}
static void
write_webm_seek_element(EbmlGlobal *ebml, unsigned long id, off_t pos)
{
uint64_t offset = pos - ebml->position_reference;
EbmlLoc start;
Ebml_StartSubElement(ebml, &start, Seek);
Ebml_SerializeBinary(ebml, SeekID, id);
Ebml_SerializeUnsigned64(ebml, SeekPosition, offset);
Ebml_EndSubElement(ebml, &start);
}
static void
write_webm_seek_info(EbmlGlobal *ebml)
{
off_t pos;
/* Save the current stream pointer */
pos = ftello(ebml->stream);
if(ebml->seek_info_pos)
fseeko(ebml->stream, ebml->seek_info_pos, SEEK_SET);
else
ebml->seek_info_pos = pos;
{
EbmlLoc start;
Ebml_StartSubElement(ebml, &start, SeekHead);
write_webm_seek_element(ebml, Tracks, ebml->track_pos);
write_webm_seek_element(ebml, Cues, ebml->cue_pos);
write_webm_seek_element(ebml, Info, ebml->segment_info_pos);
Ebml_EndSubElement(ebml, &start);
}
{
//segment info
EbmlLoc startInfo;
uint64_t frame_time;
char version_string[64];
/* Assemble version string */
if(ebml->debug)
strcpy(version_string, "vpxenc");
else
{
strcpy(version_string, "vpxenc ");
strncat(version_string,
vpx_codec_version_str(),
sizeof(version_string) - 1 - strlen(version_string));
}
frame_time = (uint64_t)1000 * ebml->framerate.den
/ ebml->framerate.num;
ebml->segment_info_pos = ftello(ebml->stream);
Ebml_StartSubElement(ebml, &startInfo, Info);
Ebml_SerializeUnsigned(ebml, TimecodeScale, 1000000);
Ebml_SerializeFloat(ebml, Segment_Duration,
ebml->last_pts_ms + frame_time);
Ebml_SerializeString(ebml, 0x4D80, version_string);
Ebml_SerializeString(ebml, 0x5741, version_string);
Ebml_EndSubElement(ebml, &startInfo);
}
}
static void
write_webm_file_header(EbmlGlobal *glob,
const vpx_codec_enc_cfg_t *cfg,
const struct vpx_rational *fps,
stereo_format_t stereo_fmt)
{
{
EbmlLoc start;
Ebml_StartSubElement(glob, &start, EBML);
Ebml_SerializeUnsigned(glob, EBMLVersion, 1);
Ebml_SerializeUnsigned(glob, EBMLReadVersion, 1); //EBML Read Version
Ebml_SerializeUnsigned(glob, EBMLMaxIDLength, 4); //EBML Max ID Length
Ebml_SerializeUnsigned(glob, EBMLMaxSizeLength, 8); //EBML Max Size Length
Ebml_SerializeString(glob, DocType, "webm"); //Doc Type
Ebml_SerializeUnsigned(glob, DocTypeVersion, 2); //Doc Type Version
Ebml_SerializeUnsigned(glob, DocTypeReadVersion, 2); //Doc Type Read Version
Ebml_EndSubElement(glob, &start);
}
{
Ebml_StartSubElement(glob, &glob->startSegment, Segment); //segment
glob->position_reference = ftello(glob->stream);
glob->framerate = *fps;
write_webm_seek_info(glob);
{
EbmlLoc trackStart;
glob->track_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &trackStart, Tracks);
{
unsigned int trackNumber = 1;
uint64_t trackID = 0;
EbmlLoc start;
Ebml_StartSubElement(glob, &start, TrackEntry);
Ebml_SerializeUnsigned(glob, TrackNumber, trackNumber);
glob->track_id_pos = ftello(glob->stream);
Ebml_SerializeUnsigned32(glob, TrackUID, trackID);
Ebml_SerializeUnsigned(glob, TrackType, 1); //video is always 1
Ebml_SerializeString(glob, CodecID, "V_VP8");
{
unsigned int pixelWidth = cfg->g_w;
unsigned int pixelHeight = cfg->g_h;
float frameRate = (float)fps->num/(float)fps->den;
EbmlLoc videoStart;
Ebml_StartSubElement(glob, &videoStart, Video);
Ebml_SerializeUnsigned(glob, PixelWidth, pixelWidth);
Ebml_SerializeUnsigned(glob, PixelHeight, pixelHeight);
Ebml_SerializeUnsigned(glob, StereoMode, stereo_fmt);
Ebml_SerializeFloat(glob, FrameRate, frameRate);
Ebml_EndSubElement(glob, &videoStart); //Video
}
Ebml_EndSubElement(glob, &start); //Track Entry
}
Ebml_EndSubElement(glob, &trackStart);
}
// segment element is open
}
}
static void
write_webm_block(EbmlGlobal *glob,
const vpx_codec_enc_cfg_t *cfg,
const vpx_codec_cx_pkt_t *pkt)
{
unsigned long block_length;
unsigned char track_number;
unsigned short block_timecode = 0;
unsigned char flags;
int64_t pts_ms;
int start_cluster = 0, is_keyframe;
/* Calculate the PTS of this frame in milliseconds */
pts_ms = pkt->data.frame.pts * 1000
* (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den;
if(pts_ms <= glob->last_pts_ms)
pts_ms = glob->last_pts_ms + 1;
glob->last_pts_ms = pts_ms;
/* Calculate the relative time of this block */
if(pts_ms - glob->cluster_timecode > SHRT_MAX)
start_cluster = 1;
else
block_timecode = pts_ms - glob->cluster_timecode;
is_keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY);
if(start_cluster || is_keyframe)
{
if(glob->cluster_open)
Ebml_EndSubElement(glob, &glob->startCluster);
/* Open the new cluster */
block_timecode = 0;
glob->cluster_open = 1;
glob->cluster_timecode = pts_ms;
glob->cluster_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &glob->startCluster, Cluster); //cluster
Ebml_SerializeUnsigned(glob, Timecode, glob->cluster_timecode);
/* Save a cue point if this is a keyframe. */
if(is_keyframe)
{
struct cue_entry *cue, *new_cue_list;
new_cue_list = realloc(glob->cue_list,
(glob->cues+1) * sizeof(struct cue_entry));
if(new_cue_list)
glob->cue_list = new_cue_list;
else
fatal("Failed to realloc cue list.");
cue = &glob->cue_list[glob->cues];
cue->time = glob->cluster_timecode;
cue->loc = glob->cluster_pos;
glob->cues++;
}
}
/* Write the Simple Block */
Ebml_WriteID(glob, SimpleBlock);
block_length = pkt->data.frame.sz + 4;
block_length |= 0x10000000;
Ebml_Serialize(glob, &block_length, sizeof(block_length), 4);
track_number = 1;
track_number |= 0x80;
Ebml_Write(glob, &track_number, 1);
Ebml_Serialize(glob, &block_timecode, sizeof(block_timecode), 2);
flags = 0;
if(is_keyframe)
flags |= 0x80;
if(pkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE)
flags |= 0x08;
Ebml_Write(glob, &flags, 1);
Ebml_Write(glob, pkt->data.frame.buf, pkt->data.frame.sz);
}
static void
write_webm_file_footer(EbmlGlobal *glob, long hash)
{
if(glob->cluster_open)
Ebml_EndSubElement(glob, &glob->startCluster);
{
EbmlLoc start;
unsigned int i;
glob->cue_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &start, Cues);
for(i=0; i<glob->cues; i++)
{
struct cue_entry *cue = &glob->cue_list[i];
EbmlLoc start;
Ebml_StartSubElement(glob, &start, CuePoint);
{
EbmlLoc start;
Ebml_SerializeUnsigned(glob, CueTime, cue->time);
Ebml_StartSubElement(glob, &start, CueTrackPositions);
Ebml_SerializeUnsigned(glob, CueTrack, 1);
Ebml_SerializeUnsigned64(glob, CueClusterPosition,
cue->loc - glob->position_reference);
//Ebml_SerializeUnsigned(glob, CueBlockNumber, cue->blockNumber);
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &glob->startSegment);
/* Patch up the seek info block */
write_webm_seek_info(glob);
/* Patch up the track id */
fseeko(glob->stream, glob->track_id_pos, SEEK_SET);
Ebml_SerializeUnsigned32(glob, TrackUID, glob->debug ? 0xDEADBEEF : hash);
fseeko(glob->stream, 0, SEEK_END);
}
/* Murmur hash derived from public domain reference implementation at
* http://sites.google.com/site/murmurhash/
*/
static unsigned int murmur ( const void * key, int len, unsigned int seed )
{
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = seed ^ len;
const unsigned char * data = (const unsigned char *)key;
while(len >= 4)
{
unsigned int k;
k = data[0];
k |= data[1] << 8;
k |= data[2] << 16;
k |= data[3] << 24;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
switch(len)
{
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0];
h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#include "math.h"
static double vp8_mse2psnr(double Samples, double Peak, double Mse)
{
double psnr;
if ((double)Mse > 0.0)
psnr = 10.0 * log10(Peak * Peak * Samples / Mse);
else
psnr = 60; // Limit to prevent / 0
if (psnr > 60)
psnr = 60;
return psnr;
}
#include "args.h"
static const arg_def_t debugmode = ARG_DEF("D", "debug", 0,
"Debug mode (makes output deterministic)");
static const arg_def_t outputfile = ARG_DEF("o", "output", 1,
"Output filename");
static const arg_def_t use_yv12 = ARG_DEF(NULL, "yv12", 0,
"Input file is YV12 ");
static const arg_def_t use_i420 = ARG_DEF(NULL, "i420", 0,
"Input file is I420 (default)");
static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1,
"Codec to use");
static const arg_def_t passes = ARG_DEF("p", "passes", 1,
"Number of passes (1/2)");
static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1,
"Pass to execute (1/2)");
static const arg_def_t fpf_name = ARG_DEF(NULL, "fpf", 1,
"First pass statistics file name");
static const arg_def_t limit = ARG_DEF(NULL, "limit", 1,
"Stop encoding after n input frames");
static const arg_def_t deadline = ARG_DEF("d", "deadline", 1,
"Deadline per frame (usec)");
static const arg_def_t best_dl = ARG_DEF(NULL, "best", 0,
"Use Best Quality Deadline");
static const arg_def_t good_dl = ARG_DEF(NULL, "good", 0,
"Use Good Quality Deadline");
static const arg_def_t rt_dl = ARG_DEF(NULL, "rt", 0,
"Use Realtime Quality Deadline");
static const arg_def_t verbosearg = ARG_DEF("v", "verbose", 0,
"Show encoder parameters");
static const arg_def_t psnrarg = ARG_DEF(NULL, "psnr", 0,
"Show PSNR in status line");
static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1,
"Stream frame rate (rate/scale)");
static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0,
"Output IVF (default is WebM)");
static const arg_def_t out_part = ARG_DEF("P", "output-partitions", 0,
"Makes encoder output partitions. Requires IVF output!");
static const arg_def_t q_hist_n = ARG_DEF(NULL, "q-hist", 1,
"Show quantizer histogram (n-buckets)");
static const arg_def_t rate_hist_n = ARG_DEF(NULL, "rate-hist", 1,
"Show rate histogram (n-buckets)");
static const arg_def_t *main_args[] =
{
&debugmode,
&outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &deadline,
&best_dl, &good_dl, &rt_dl,
&verbosearg, &psnrarg, &use_ivf, &out_part, &q_hist_n, &rate_hist_n,
NULL
};
static const arg_def_t usage = ARG_DEF("u", "usage", 1,
"Usage profile number to use");
static const arg_def_t threads = ARG_DEF("t", "threads", 1,
"Max number of threads to use");
static const arg_def_t profile = ARG_DEF(NULL, "profile", 1,
"Bitstream profile number to use");
static const arg_def_t width = ARG_DEF("w", "width", 1,
"Frame width");
static const arg_def_t height = ARG_DEF("h", "height", 1,
"Frame height");
static const struct arg_enum_list stereo_mode_enum[] = {
{"mono" , STEREO_FORMAT_MONO},
{"left-right", STEREO_FORMAT_LEFT_RIGHT},
{"bottom-top", STEREO_FORMAT_BOTTOM_TOP},
{"top-bottom", STEREO_FORMAT_TOP_BOTTOM},
{"right-left", STEREO_FORMAT_RIGHT_LEFT},
{NULL, 0}
};
static const arg_def_t stereo_mode = ARG_DEF_ENUM(NULL, "stereo-mode", 1,
"Stereo 3D video format", stereo_mode_enum);
static const arg_def_t timebase = ARG_DEF(NULL, "timebase", 1,
"Output timestamp precision (fractional seconds)");
static const arg_def_t error_resilient = ARG_DEF(NULL, "error-resilient", 1,
"Enable error resiliency features");
static const arg_def_t lag_in_frames = ARG_DEF(NULL, "lag-in-frames", 1,
"Max number of frames to lag");
static const arg_def_t *global_args[] =
{
&use_yv12, &use_i420, &usage, &threads, &profile,
&width, &height, &stereo_mode, &timebase, &framerate, &error_resilient,
&lag_in_frames, NULL
};
static const arg_def_t dropframe_thresh = ARG_DEF(NULL, "drop-frame", 1,
"Temporal resampling threshold (buf %)");
static const arg_def_t resize_allowed = ARG_DEF(NULL, "resize-allowed", 1,
"Spatial resampling enabled (bool)");
static const arg_def_t resize_up_thresh = ARG_DEF(NULL, "resize-up", 1,
"Upscale threshold (buf %)");
static const arg_def_t resize_down_thresh = ARG_DEF(NULL, "resize-down", 1,
"Downscale threshold (buf %)");
static const struct arg_enum_list end_usage_enum[] = {
{"vbr", VPX_VBR},
{"cbr", VPX_CBR},
{"cq", VPX_CQ},
{NULL, 0}
};
static const arg_def_t end_usage = ARG_DEF_ENUM(NULL, "end-usage", 1,
"Rate control mode", end_usage_enum);
static const arg_def_t target_bitrate = ARG_DEF(NULL, "target-bitrate", 1,
"Bitrate (kbps)");
static const arg_def_t min_quantizer = ARG_DEF(NULL, "min-q", 1,
"Minimum (best) quantizer");
static const arg_def_t max_quantizer = ARG_DEF(NULL, "max-q", 1,
"Maximum (worst) quantizer");
static const arg_def_t undershoot_pct = ARG_DEF(NULL, "undershoot-pct", 1,
"Datarate undershoot (min) target (%)");
static const arg_def_t overshoot_pct = ARG_DEF(NULL, "overshoot-pct", 1,
"Datarate overshoot (max) target (%)");
static const arg_def_t buf_sz = ARG_DEF(NULL, "buf-sz", 1,
"Client buffer size (ms)");
static const arg_def_t buf_initial_sz = ARG_DEF(NULL, "buf-initial-sz", 1,
"Client initial buffer size (ms)");
static const arg_def_t buf_optimal_sz = ARG_DEF(NULL, "buf-optimal-sz", 1,
"Client optimal buffer size (ms)");
static const arg_def_t *rc_args[] =
{
&dropframe_thresh, &resize_allowed, &resize_up_thresh, &resize_down_thresh,
&end_usage, &target_bitrate, &min_quantizer, &max_quantizer,
&undershoot_pct, &overshoot_pct, &buf_sz, &buf_initial_sz, &buf_optimal_sz,
NULL
};
static const arg_def_t bias_pct = ARG_DEF(NULL, "bias-pct", 1,
"CBR/VBR bias (0=CBR, 100=VBR)");
static const arg_def_t minsection_pct = ARG_DEF(NULL, "minsection-pct", 1,
"GOP min bitrate (% of target)");
static const arg_def_t maxsection_pct = ARG_DEF(NULL, "maxsection-pct", 1,
"GOP max bitrate (% of target)");
static const arg_def_t *rc_twopass_args[] =
{
&bias_pct, &minsection_pct, &maxsection_pct, NULL
};
static const arg_def_t kf_min_dist = ARG_DEF(NULL, "kf-min-dist", 1,
"Minimum keyframe interval (frames)");
static const arg_def_t kf_max_dist = ARG_DEF(NULL, "kf-max-dist", 1,
"Maximum keyframe interval (frames)");
static const arg_def_t kf_disabled = ARG_DEF(NULL, "disable-kf", 0,
"Disable keyframe placement");
static const arg_def_t *kf_args[] =
{
&kf_min_dist, &kf_max_dist, &kf_disabled, NULL
};
#if CONFIG_VP8_ENCODER
static const arg_def_t noise_sens = ARG_DEF(NULL, "noise-sensitivity", 1,
"Noise sensitivity (frames to blur)");
static const arg_def_t sharpness = ARG_DEF(NULL, "sharpness", 1,
"Filter sharpness (0-7)");
static const arg_def_t static_thresh = ARG_DEF(NULL, "static-thresh", 1,
"Motion detection threshold");
#endif
#if CONFIG_VP8_ENCODER
static const arg_def_t cpu_used = ARG_DEF(NULL, "cpu-used", 1,
"CPU Used (-16..16)");
#endif
#if CONFIG_VP8_ENCODER
static const arg_def_t token_parts = ARG_DEF(NULL, "token-parts", 1,
"Number of token partitions to use, log2");
static const arg_def_t auto_altref = ARG_DEF(NULL, "auto-alt-ref", 1,
"Enable automatic alt reference frames");
static const arg_def_t arnr_maxframes = ARG_DEF(NULL, "arnr-maxframes", 1,
"AltRef Max Frames");
static const arg_def_t arnr_strength = ARG_DEF(NULL, "arnr-strength", 1,
"AltRef Strength");
static const arg_def_t arnr_type = ARG_DEF(NULL, "arnr-type", 1,
"AltRef Type");
static const struct arg_enum_list tuning_enum[] = {
{"psnr", VP8_TUNE_PSNR},
{"ssim", VP8_TUNE_SSIM},
{NULL, 0}
};
static const arg_def_t tune_ssim = ARG_DEF_ENUM(NULL, "tune", 1,
"Material to favor", tuning_enum);
static const arg_def_t cq_level = ARG_DEF(NULL, "cq-level", 1,
"Constrained Quality Level");
static const arg_def_t max_intra_rate_pct = ARG_DEF(NULL, "max-intra-rate", 1,
"Max I-frame bitrate (pct)");
static const arg_def_t *vp8_args[] =
{
&cpu_used, &auto_altref, &noise_sens, &sharpness, &static_thresh,
&token_parts, &arnr_maxframes, &arnr_strength, &arnr_type,
&tune_ssim, &cq_level, &max_intra_rate_pct, NULL
};
static const int vp8_arg_ctrl_map[] =
{
VP8E_SET_CPUUSED, VP8E_SET_ENABLEAUTOALTREF,
VP8E_SET_NOISE_SENSITIVITY, VP8E_SET_SHARPNESS, VP8E_SET_STATIC_THRESHOLD,
VP8E_SET_TOKEN_PARTITIONS,
VP8E_SET_ARNR_MAXFRAMES, VP8E_SET_ARNR_STRENGTH , VP8E_SET_ARNR_TYPE,
VP8E_SET_TUNING, VP8E_SET_CQ_LEVEL, VP8E_SET_MAX_INTRA_BITRATE_PCT, 0
};
#endif
static const arg_def_t *no_args[] = { NULL };
static void usage_exit()
{
int i;
fprintf(stderr, "Usage: %s <options> -o dst_filename src_filename \n",
exec_name);
fprintf(stderr, "\nOptions:\n");
arg_show_usage(stdout, main_args);
fprintf(stderr, "\nEncoder Global Options:\n");
arg_show_usage(stdout, global_args);
fprintf(stderr, "\nRate Control Options:\n");
arg_show_usage(stdout, rc_args);
fprintf(stderr, "\nTwopass Rate Control Options:\n");
arg_show_usage(stdout, rc_twopass_args);
fprintf(stderr, "\nKeyframe Placement Options:\n");
arg_show_usage(stdout, kf_args);
#if CONFIG_VP8_ENCODER
fprintf(stderr, "\nVP8 Specific Options:\n");
arg_show_usage(stdout, vp8_args);
#endif
fprintf(stderr, "\nStream timebase (--timebase):\n"
" The desired precision of timestamps in the output, expressed\n"
" in fractional seconds. Default is 1/1000.\n");
fprintf(stderr, "\n"
"Included encoders:\n"
"\n");
for (i = 0; i < sizeof(codecs) / sizeof(codecs[0]); i++)
fprintf(stderr, " %-6s - %s\n",
codecs[i].name,
vpx_codec_iface_name(codecs[i].iface));
exit(EXIT_FAILURE);
}
#define HIST_BAR_MAX 40
struct hist_bucket
{
int low, high, count;
};
static int merge_hist_buckets(struct hist_bucket *bucket,
int *buckets_,
int max_buckets)
{
int small_bucket = 0, merge_bucket = INT_MAX, big_bucket=0;
int buckets = *buckets_;
int i;
/* Find the extrema for this list of buckets */
big_bucket = small_bucket = 0;
for(i=0; i < buckets; i++)
{
if(bucket[i].count < bucket[small_bucket].count)
small_bucket = i;
if(bucket[i].count > bucket[big_bucket].count)
big_bucket = i;
}
/* If we have too many buckets, merge the smallest with an adjacent
* bucket.
*/
while(buckets > max_buckets)
{
int last_bucket = buckets - 1;
// merge the small bucket with an adjacent one.
if(small_bucket == 0)
merge_bucket = 1;
else if(small_bucket == last_bucket)
merge_bucket = last_bucket - 1;
else if(bucket[small_bucket - 1].count < bucket[small_bucket + 1].count)
merge_bucket = small_bucket - 1;
else
merge_bucket = small_bucket + 1;
assert(abs(merge_bucket - small_bucket) <= 1);
assert(small_bucket < buckets);
assert(big_bucket < buckets);
assert(merge_bucket < buckets);
if(merge_bucket < small_bucket)
{
bucket[merge_bucket].high = bucket[small_bucket].high;
bucket[merge_bucket].count += bucket[small_bucket].count;
}
else
{
bucket[small_bucket].high = bucket[merge_bucket].high;
bucket[small_bucket].count += bucket[merge_bucket].count;
merge_bucket = small_bucket;
}
assert(bucket[merge_bucket].low != bucket[merge_bucket].high);
buckets--;
/* Remove the merge_bucket from the list, and find the new small
* and big buckets while we're at it
*/
big_bucket = small_bucket = 0;
for(i=0; i < buckets; i++)
{
if(i > merge_bucket)
bucket[i] = bucket[i+1];
if(bucket[i].count < bucket[small_bucket].count)
small_bucket = i;
if(bucket[i].count > bucket[big_bucket].count)
big_bucket = i;
}
}
*buckets_ = buckets;
return bucket[big_bucket].count;
}
static void show_histogram(const struct hist_bucket *bucket,
int buckets,
int total,
int scale)
{
const char *pat1, *pat2;
int i;
switch((int)(log(bucket[buckets-1].high)/log(10))+1)
{
case 1:
case 2:
pat1 = "%4d %2s: ";
pat2 = "%4d-%2d: ";
break;
case 3:
pat1 = "%5d %3s: ";
pat2 = "%5d-%3d: ";
break;
case 4:
pat1 = "%6d %4s: ";
pat2 = "%6d-%4d: ";
break;
case 5:
pat1 = "%7d %5s: ";
pat2 = "%7d-%5d: ";
break;
case 6:
pat1 = "%8d %6s: ";
pat2 = "%8d-%6d: ";
break;
case 7:
pat1 = "%9d %7s: ";
pat2 = "%9d-%7d: ";
break;
default:
pat1 = "%12d %10s: ";
pat2 = "%12d-%10d: ";
break;
}
for(i=0; i<buckets; i++)
{
int len;
int j;
float pct;
pct = 100.0 * (float)bucket[i].count / (float)total;
len = HIST_BAR_MAX * bucket[i].count / scale;
if(len < 1)
len = 1;
assert(len <= HIST_BAR_MAX);
if(bucket[i].low == bucket[i].high)
fprintf(stderr, pat1, bucket[i].low, "");
else
fprintf(stderr, pat2, bucket[i].low, bucket[i].high);
for(j=0; j<HIST_BAR_MAX; j++)
fprintf(stderr, j<len?"=":" ");
fprintf(stderr, "\t%5d (%6.2f%%)\n",bucket[i].count,pct);
}
}
static void show_q_histogram(const int counts[64], int max_buckets)
{
struct hist_bucket bucket[64];
int buckets = 0;
int total = 0;
int scale;
int i;
for(i=0; i<64; i++)
{
if(counts[i])
{
bucket[buckets].low = bucket[buckets].high = i;
bucket[buckets].count = counts[i];
buckets++;
total += counts[i];
}
}
fprintf(stderr, "\nQuantizer Selection:\n");
scale = merge_hist_buckets(bucket, &buckets, max_buckets);
show_histogram(bucket, buckets, total, scale);
}
#define RATE_BINS (100)
struct rate_hist
{
int64_t *pts;
int *sz;
int samples;
int frames;
struct hist_bucket bucket[RATE_BINS];
int total;
};
static void init_rate_histogram(struct rate_hist *hist,
const vpx_codec_enc_cfg_t *cfg,
const vpx_rational_t *fps)
{
int i;
/* Determine the number of samples in the buffer. Use the file's framerate
* to determine the number of frames in rc_buf_sz milliseconds, with an
* adjustment (5/4) to account for alt-refs
*/
hist->samples = cfg->rc_buf_sz * 5 / 4 * fps->num / fps->den / 1000;
// prevent division by zero
if (hist->samples == 0)
hist->samples=1;
hist->pts = calloc(hist->samples, sizeof(*hist->pts));
hist->sz = calloc(hist->samples, sizeof(*hist->sz));
for(i=0; i<RATE_BINS; i++)
{
hist->bucket[i].low = INT_MAX;
hist->bucket[i].high = 0;
hist->bucket[i].count = 0;
}
}
static void destroy_rate_histogram(struct rate_hist *hist)
{
free(hist->pts);
free(hist->sz);
}
static void update_rate_histogram(struct rate_hist *hist,
const vpx_codec_enc_cfg_t *cfg,
const vpx_codec_cx_pkt_t *pkt)
{
int i, idx;
int64_t now, then, sum_sz = 0, avg_bitrate;
now = pkt->data.frame.pts * 1000
* (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den;
idx = hist->frames++ % hist->samples;
hist->pts[idx] = now;
hist->sz[idx] = pkt->data.frame.sz;
if(now < cfg->rc_buf_initial_sz)
return;
then = now;
/* Sum the size over the past rc_buf_sz ms */
for(i = hist->frames; i > 0 && hist->frames - i < hist->samples; i--)
{
int i_idx = (i-1) % hist->samples;
then = hist->pts[i_idx];
if(now - then > cfg->rc_buf_sz)
break;
sum_sz += hist->sz[i_idx];
}
if (now == then)
return;
avg_bitrate = sum_sz * 8 * 1000 / (now - then);
idx = avg_bitrate * (RATE_BINS/2) / (cfg->rc_target_bitrate * 1000);
if(idx < 0)
idx = 0;
if(idx > RATE_BINS-1)
idx = RATE_BINS-1;
if(hist->bucket[idx].low > avg_bitrate)
hist->bucket[idx].low = avg_bitrate;
if(hist->bucket[idx].high < avg_bitrate)
hist->bucket[idx].high = avg_bitrate;
hist->bucket[idx].count++;
hist->total++;
}
static void show_rate_histogram(struct rate_hist *hist,
const vpx_codec_enc_cfg_t *cfg,
int max_buckets)
{
int i, scale;
int buckets = 0;
for(i = 0; i < RATE_BINS; i++)
{
if(hist->bucket[i].low == INT_MAX)
continue;
hist->bucket[buckets++] = hist->bucket[i];
}
fprintf(stderr, "\nRate (over %dms window):\n", cfg->rc_buf_sz);
scale = merge_hist_buckets(hist->bucket, &buckets, max_buckets);
show_histogram(hist->bucket, buckets, hist->total, scale);
}
#define NELEMENTS(x) (sizeof(x)/sizeof(x[0]))
#define ARG_CTRL_CNT_MAX NELEMENTS(vp8_arg_ctrl_map)
/* Configuration elements common to all streams */
struct global_config
{
const struct codec_item *codec;
int passes;
int pass;
int usage;
int deadline;
int use_i420;
int verbose;
int limit;
int show_psnr;
int have_framerate;
struct vpx_rational framerate;
int out_part;
int debug;
int show_q_hist_buckets;
int show_rate_hist_buckets;
};
/* Per-stream configuration */
struct stream_config
{
struct vpx_codec_enc_cfg cfg;
const char *out_fn;
const char *stats_fn;
stereo_format_t stereo_fmt;
int arg_ctrls[ARG_CTRL_CNT_MAX][2];
int arg_ctrl_cnt;
int write_webm;
int have_kf_max_dist;
};
struct stream_state
{
int index;
struct stream_state *next;
struct stream_config config;
FILE *file;
struct rate_hist rate_hist;
EbmlGlobal ebml;
uint32_t hash;
uint64_t psnr_sse_total;
uint64_t psnr_samples_total;
double psnr_totals[4];
int psnr_count;
int counts[64];
vpx_codec_ctx_t encoder;
unsigned int frames_out;
uint64_t cx_time;
size_t nbytes;
stats_io_t stats;
};
void validate_positive_rational(const char *msg,
struct vpx_rational *rat)
{
if (rat->den < 0)
{
rat->num *= -1;
rat->den *= -1;
}
if (rat->num < 0)
die("Error: %s must be positive\n", msg);
if (!rat->den)
die("Error: %s has zero denominator\n", msg);
}
static void parse_global_config(struct global_config *global, char **argv)
{
char **argi, **argj;
struct arg arg;
/* Initialize default parameters */
memset(global, 0, sizeof(*global));
global->codec = codecs;
global->passes = 1;
global->use_i420 = 1;
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step)
{
arg.argv_step = 1;
if (arg_match(&arg, &codecarg, argi))
{
int j, k = -1;
for (j = 0; j < sizeof(codecs) / sizeof(codecs[0]); j++)
if (!strcmp(codecs[j].name, arg.val))
k = j;
if (k >= 0)
global->codec = codecs + k;
else
die("Error: Unrecognized argument (%s) to --codec\n",
arg.val);
}
else if (arg_match(&arg, &passes, argi))
{
global->passes = arg_parse_uint(&arg);
if (global->passes < 1 || global->passes > 2)
die("Error: Invalid number of passes (%d)\n", global->passes);
}
else if (arg_match(&arg, &pass_arg, argi))
{
global->pass = arg_parse_uint(&arg);
if (global->pass < 1 || global->pass > 2)
die("Error: Invalid pass selected (%d)\n",
global->pass);
}
else if (arg_match(&arg, &usage, argi))
global->usage = arg_parse_uint(&arg);
else if (arg_match(&arg, &deadline, argi))
global->deadline = arg_parse_uint(&arg);
else if (arg_match(&arg, &best_dl, argi))
global->deadline = VPX_DL_BEST_QUALITY;
else if (arg_match(&arg, &good_dl, argi))
global->deadline = VPX_DL_GOOD_QUALITY;
else if (arg_match(&arg, &rt_dl, argi))
global->deadline = VPX_DL_REALTIME;
else if (arg_match(&arg, &use_yv12, argi))
global->use_i420 = 0;
else if (arg_match(&arg, &use_i420, argi))
global->use_i420 = 1;
else if (arg_match(&arg, &verbosearg, argi))
global->verbose = 1;
else if (arg_match(&arg, &limit, argi))
global->limit = arg_parse_uint(&arg);
else if (arg_match(&arg, &psnrarg, argi))
global->show_psnr = 1;
else if (arg_match(&arg, &framerate, argi))
{
global->framerate = arg_parse_rational(&arg);
validate_positive_rational(arg.name, &global->framerate);
global->have_framerate = 1;
}
else if (arg_match(&arg,&out_part, argi))
global->out_part = 1;
else if (arg_match(&arg, &debugmode, argi))
global->debug = 1;
else if (arg_match(&arg, &q_hist_n, argi))
global->show_q_hist_buckets = arg_parse_uint(&arg);
else if (arg_match(&arg, &rate_hist_n, argi))
global->show_rate_hist_buckets = arg_parse_uint(&arg);
else
argj++;
}
/* Validate global config */
if (global->pass)
{
/* DWIM: Assume the user meant passes=2 if pass=2 is specified */
if (global->pass > global->passes)
{
warn("Assuming --pass=%d implies --passes=%d\n",
global->pass, global->pass);
global->passes = global->pass;
}
}
}
void open_input_file(struct input_state *input, struct global_config *global)
{
unsigned int fourcc;
/* Parse certain options from the input file, if possible */
input->file = strcmp(input->fn, "-") ? fopen(input->fn, "rb")
: set_binary_mode(stdin);
if (!input->file)
fatal("Failed to open input file");
/* For RAW input sources, these bytes will applied on the first frame
* in read_frame().
*/
input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
input->detect.position = 0;
if (input->detect.buf_read == 4
&& file_is_y4m(input->file, &input->y4m, input->detect.buf))
{
if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4) >= 0)
{
input->file_type = FILE_TYPE_Y4M;
input->w = input->y4m.pic_w;
input->h = input->y4m.pic_h;
input->framerate.num = input->y4m.fps_n;
input->framerate.den = input->y4m.fps_d;
input->use_i420 = 0;
}
else
fatal("Unsupported Y4M stream.");
}
else if (input->detect.buf_read == 4 && file_is_ivf(input, &fourcc))
{
input->file_type = FILE_TYPE_IVF;
switch (fourcc)
{
case 0x32315659:
input->use_i420 = 0;
break;
case 0x30323449:
input->use_i420 = 1;
break;
default:
fatal("Unsupported fourcc (%08x) in IVF", fourcc);
}
}
else if (input->detect.buf_read == 4 && file_is_wcap(input))
{
input->wcap = wcap_decoder_create(input->fn);
input->file_type = FILE_TYPE_WCAP;
input->w = input->wcap->width;
input->h = input->wcap->height;
input->use_i420 = 0;
if (global->have_framerate) {
input->framerate = global->framerate;
}
else {
input->framerate.num = 30;
input->framerate.den = 1;
}
}
else
{
input->file_type = FILE_TYPE_RAW;
}
}
static void close_input_file(struct input_state *input)
{
fclose(input->file);
if (input->file_type == FILE_TYPE_Y4M)
y4m_input_close(&input->y4m);
else if (input->file_type == FILE_TYPE_WCAP)
wcap_decoder_destroy(input->wcap);
}
static struct stream_state *new_stream(struct global_config *global,
struct stream_state *prev)
{
struct stream_state *stream;
stream = calloc(1, sizeof(*stream));
if(!stream)
fatal("Failed to allocate new stream.");
if(prev)
{
memcpy(stream, prev, sizeof(*stream));
stream->index++;
prev->next = stream;
}
else
{
vpx_codec_err_t res;
/* Populate encoder configuration */
res = vpx_codec_enc_config_default(global->codec->iface,
&stream->config.cfg,
global->usage);
if (res)
fatal("Failed to get config: %s\n", vpx_codec_err_to_string(res));
/* Change the default timebase to a high enough value so that the
* encoder will always create strictly increasing timestamps.
*/
stream->config.cfg.g_timebase.den = 1000;
/* Never use the library's default resolution, require it be parsed
* from the file or set on the command line.
*/
stream->config.cfg.g_w = 0;
stream->config.cfg.g_h = 0;
/* Initialize remaining stream parameters */
stream->config.stereo_fmt = STEREO_FORMAT_MONO;
stream->config.write_webm = 1;
stream->ebml.last_pts_ms = -1;
/* Allows removal of the application version from the EBML tags */
stream->ebml.debug = global->debug;
}
/* Output files must be specified for each stream */
stream->config.out_fn = NULL;
stream->next = NULL;
return stream;
}
static int parse_stream_params(struct global_config *global,
struct stream_state *stream,
char **argv)
{
char **argi, **argj;
struct arg arg;
static const arg_def_t **ctrl_args = no_args;
static const int *ctrl_args_map = NULL;
struct stream_config *config = &stream->config;
int eos_mark_found = 0;
/* Handle codec specific options */
if (global->codec->iface == &vpx_codec_vp8_cx_algo)
{
ctrl_args = vp8_args;
ctrl_args_map = vp8_arg_ctrl_map;
}
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step)
{
arg.argv_step = 1;
/* Once we've found an end-of-stream marker (--) we want to continue
* shifting arguments but not consuming them.
*/
if (eos_mark_found)
{
argj++;
continue;
}
else if (!strcmp(*argj, "--"))
{
eos_mark_found = 1;
continue;
}
if (0);
else if (arg_match(&arg, &outputfile, argi))
config->out_fn = arg.val;
else if (arg_match(&arg, &fpf_name, argi))
config->stats_fn = arg.val;
else if (arg_match(&arg, &use_ivf, argi))
config->write_webm = 0;
else if (arg_match(&arg, &threads, argi))
config->cfg.g_threads = arg_parse_uint(&arg);
else if (arg_match(&arg, &profile, argi))
config->cfg.g_profile = arg_parse_uint(&arg);
else if (arg_match(&arg, &width, argi))
config->cfg.g_w = arg_parse_uint(&arg);
else if (arg_match(&arg, &height, argi))
config->cfg.g_h = arg_parse_uint(&arg);
else if (arg_match(&arg, &stereo_mode, argi))
config->stereo_fmt = arg_parse_enum_or_int(&arg);
else if (arg_match(&arg, &timebase, argi))
{
config->cfg.g_timebase = arg_parse_rational(&arg);
validate_positive_rational(arg.name, &config->cfg.g_timebase);
}
else if (arg_match(&arg, &error_resilient, argi))
config->cfg.g_error_resilient = arg_parse_uint(&arg);
else if (arg_match(&arg, &lag_in_frames, argi))
config->cfg.g_lag_in_frames = arg_parse_uint(&arg);
else if (arg_match(&arg, &dropframe_thresh, argi))
config->cfg.rc_dropframe_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_allowed, argi))
config->cfg.rc_resize_allowed = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_up_thresh, argi))
config->cfg.rc_resize_up_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_down_thresh, argi))
config->cfg.rc_resize_down_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &end_usage, argi))
config->cfg.rc_end_usage = arg_parse_enum_or_int(&arg);
else if (arg_match(&arg, &target_bitrate, argi))
config->cfg.rc_target_bitrate = arg_parse_uint(&arg);
else if (arg_match(&arg, &min_quantizer, argi))
config->cfg.rc_min_quantizer = arg_parse_uint(&arg);
else if (arg_match(&arg, &max_quantizer, argi))
config->cfg.rc_max_quantizer = arg_parse_uint(&arg);
else if (arg_match(&arg, &undershoot_pct, argi))
config->cfg.rc_undershoot_pct = arg_parse_uint(&arg);
else if (arg_match(&arg, &overshoot_pct, argi))
config->cfg.rc_overshoot_pct = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_sz, argi))
config->cfg.rc_buf_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_initial_sz, argi))
config->cfg.rc_buf_initial_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_optimal_sz, argi))
config->cfg.rc_buf_optimal_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &bias_pct, argi))
{
config->cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg);
if (global->passes < 2)
warn("option %s ignored in one-pass mode.\n", arg.name);
}
else if (arg_match(&arg, &minsection_pct, argi))
{
config->cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg);
if (global->passes < 2)
warn("option %s ignored in one-pass mode.\n", arg.name);
}
else if (arg_match(&arg, &maxsection_pct, argi))
{
config->cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg);
if (global->passes < 2)
warn("option %s ignored in one-pass mode.\n", arg.name);
}
else if (arg_match(&arg, &kf_min_dist, argi))
config->cfg.kf_min_dist = arg_parse_uint(&arg);
else if (arg_match(&arg, &kf_max_dist, argi))
{
config->cfg.kf_max_dist = arg_parse_uint(&arg);
config->have_kf_max_dist = 1;
}
else if (arg_match(&arg, &kf_disabled, argi))
config->cfg.kf_mode = VPX_KF_DISABLED;
else
{
int i, match = 0;
for (i = 0; ctrl_args[i]; i++)
{
if (arg_match(&arg, ctrl_args[i], argi))
{
int j;
match = 1;
/* Point either to the next free element or the first
* instance of this control.
*/
for(j=0; j<config->arg_ctrl_cnt; j++)
if(config->arg_ctrls[j][0] == ctrl_args_map[i])
break;
/* Update/insert */
assert(j < ARG_CTRL_CNT_MAX);
if (j < ARG_CTRL_CNT_MAX)
{
config->arg_ctrls[j][0] = ctrl_args_map[i];
config->arg_ctrls[j][1] = arg_parse_enum_or_int(&arg);
if(j == config->arg_ctrl_cnt)
config->arg_ctrl_cnt++;
}
}
}
if (!match)
argj++;
}
}
return eos_mark_found;
}
#define FOREACH_STREAM(func)\
do\
{\
struct stream_state *stream;\
\
for(stream = streams; stream; stream = stream->next)\
func;\
}while(0)
static void validate_stream_config(struct stream_state *stream)
{
struct stream_state *streami;
if(!stream->config.cfg.g_w || !stream->config.cfg.g_h)
fatal("Stream %d: Specify stream dimensions with --width (-w) "
" and --height (-h)", stream->index);
for(streami = stream; streami; streami = streami->next)
{
/* All streams require output files */
if(!streami->config.out_fn)
fatal("Stream %d: Output file is required (specify with -o)",
streami->index);
/* Check for two streams outputting to the same file */
if(streami != stream)
{
const char *a = stream->config.out_fn;
const char *b = streami->config.out_fn;
if(!strcmp(a,b) && strcmp(a, "/dev/null") && strcmp(a, ":nul"))
fatal("Stream %d: duplicate output file (from stream %d)",
streami->index, stream->index);
}
/* Check for two streams sharing a stats file. */
if(streami != stream)
{
const char *a = stream->config.stats_fn;
const char *b = streami->config.stats_fn;
if(a && b && !strcmp(a,b))
fatal("Stream %d: duplicate stats file (from stream %d)",
streami->index, stream->index);
}
}
}
static void set_stream_dimensions(struct stream_state *stream,
unsigned int w,
unsigned int h)
{
if ((stream->config.cfg.g_w && stream->config.cfg.g_w != w)
||(stream->config.cfg.g_h && stream->config.cfg.g_h != h))
fatal("Stream %d: Resizing not yet supported", stream->index);
stream->config.cfg.g_w = w;
stream->config.cfg.g_h = h;
}
static void set_default_kf_interval(struct stream_state *stream,
struct global_config *global)
{
/* Use a max keyframe interval of 5 seconds, if none was
* specified on the command line.
*/
if (!stream->config.have_kf_max_dist)
{
double framerate = (double)global->framerate.num/global->framerate.den;
if (framerate > 0.0)
stream->config.cfg.kf_max_dist = 5.0*framerate;
}
}
static void show_stream_config(struct stream_state *stream,
struct global_config *global,
struct input_state *input)
{
#define SHOW(field) \
fprintf(stderr, " %-28s = %d\n", #field, stream->config.cfg.field)
if(stream->index == 0)
{
fprintf(stderr, "Codec: %s\n",
vpx_codec_iface_name(global->codec->iface));
fprintf(stderr, "Source file: %s Format: %s\n", input->fn,
input->use_i420 ? "I420" : "YV12");
}
if(stream->next || stream->index)
fprintf(stderr, "\nStream Index: %d\n", stream->index);
fprintf(stderr, "Destination file: %s\n", stream->config.out_fn);
fprintf(stderr, "Encoder parameters:\n");
SHOW(g_usage);
SHOW(g_threads);
SHOW(g_profile);
SHOW(g_w);
SHOW(g_h);
SHOW(g_timebase.num);
SHOW(g_timebase.den);
SHOW(g_error_resilient);
SHOW(g_pass);
SHOW(g_lag_in_frames);
SHOW(rc_dropframe_thresh);
SHOW(rc_resize_allowed);
SHOW(rc_resize_up_thresh);
SHOW(rc_resize_down_thresh);
SHOW(rc_end_usage);
SHOW(rc_target_bitrate);
SHOW(rc_min_quantizer);
SHOW(rc_max_quantizer);
SHOW(rc_undershoot_pct);
SHOW(rc_overshoot_pct);
SHOW(rc_buf_sz);
SHOW(rc_buf_initial_sz);
SHOW(rc_buf_optimal_sz);
SHOW(rc_2pass_vbr_bias_pct);
SHOW(rc_2pass_vbr_minsection_pct);
SHOW(rc_2pass_vbr_maxsection_pct);
SHOW(kf_mode);
SHOW(kf_min_dist);
SHOW(kf_max_dist);
}
static void open_output_file(struct stream_state *stream,
struct global_config *global)
{
const char *fn = stream->config.out_fn;
stream->file = strcmp(fn, "-") ? fopen(fn, "wb") : set_binary_mode(stdout);
if (!stream->file)
fatal("Failed to open output file");
if(stream->config.write_webm && fseek(stream->file, 0, SEEK_CUR))
fatal("WebM output to pipes not supported.");
if(stream->config.write_webm)
{
stream->ebml.stream = stream->file;
write_webm_file_header(&stream->ebml, &stream->config.cfg,
&global->framerate,
stream->config.stereo_fmt);
}
else
write_ivf_file_header(stream->file, &stream->config.cfg,
global->codec->fourcc, 0);
}
static void close_output_file(struct stream_state *stream,
unsigned int fourcc)
{
if(stream->config.write_webm)
{
write_webm_file_footer(&stream->ebml, stream->hash);
free(stream->ebml.cue_list);
stream->ebml.cue_list = NULL;
}
else
{
if (!fseek(stream->file, 0, SEEK_SET))
write_ivf_file_header(stream->file, &stream->config.cfg,
fourcc,
stream->frames_out);
}
fclose(stream->file);
}
static void setup_pass(struct stream_state *stream,
struct global_config *global,
int pass)
{
if (stream->config.stats_fn)
{
if (!stats_open_file(&stream->stats, stream->config.stats_fn,
pass))
fatal("Failed to open statistics store");
}
else
{
if (!stats_open_mem(&stream->stats, pass))
fatal("Failed to open statistics store");
}
stream->config.cfg.g_pass = global->passes == 2
? pass ? VPX_RC_LAST_PASS : VPX_RC_FIRST_PASS
: VPX_RC_ONE_PASS;
if (pass)
stream->config.cfg.rc_twopass_stats_in = stats_get(&stream->stats);
stream->cx_time = 0;
stream->nbytes = 0;
stream->frames_out = 0;
}
static void initialize_encoder(struct stream_state *stream,
struct global_config *global)
{
int i;
int flags = 0;
flags |= global->show_psnr ? VPX_CODEC_USE_PSNR : 0;
flags |= global->out_part ? VPX_CODEC_USE_OUTPUT_PARTITION : 0;
/* Construct Encoder Context */
vpx_codec_enc_init(&stream->encoder, global->codec->iface,
&stream->config.cfg, flags);
ctx_exit_on_error(&stream->encoder, "Failed to initialize encoder");
/* Note that we bypass the vpx_codec_control wrapper macro because
* we're being clever to store the control IDs in an array. Real
* applications will want to make use of the enumerations directly
*/
for (i = 0; i < stream->config.arg_ctrl_cnt; i++)
{
int ctrl = stream->config.arg_ctrls[i][0];
int value = stream->config.arg_ctrls[i][1];
if (vpx_codec_control_(&stream->encoder, ctrl, value))
fprintf(stderr, "Error: Tried to set control %d = %d\n",
ctrl, value);
ctx_exit_on_error(&stream->encoder, "Failed to control codec");
}
}
static void encode_frame(struct stream_state *stream,
struct global_config *global,
struct vpx_image *img,
unsigned int frames_in)
{
vpx_codec_pts_t frame_start, next_frame_start;
struct vpx_codec_enc_cfg *cfg = &stream->config.cfg;
struct vpx_usec_timer timer;
frame_start = (cfg->g_timebase.den * (int64_t)(frames_in - 1)
* global->framerate.den)
/ cfg->g_timebase.num / global->framerate.num;
next_frame_start = (cfg->g_timebase.den * (int64_t)(frames_in)
* global->framerate.den)
/ cfg->g_timebase.num / global->framerate.num;
vpx_usec_timer_start(&timer);
vpx_codec_encode(&stream->encoder, img, frame_start,
next_frame_start - frame_start,
0, global->deadline);
vpx_usec_timer_mark(&timer);
stream->cx_time += vpx_usec_timer_elapsed(&timer);
ctx_exit_on_error(&stream->encoder, "Stream %d: Failed to encode frame",
stream->index);
}
static void update_quantizer_histogram(struct stream_state *stream)
{
if(stream->config.cfg.g_pass != VPX_RC_FIRST_PASS)
{
int q;
vpx_codec_control(&stream->encoder, VP8E_GET_LAST_QUANTIZER_64, &q);
ctx_exit_on_error(&stream->encoder, "Failed to read quantizer");
stream->counts[q]++;
}
}
static void get_cx_data(struct stream_state *stream,
struct global_config *global,
int *got_data)
{
const vpx_codec_cx_pkt_t *pkt;
const struct vpx_codec_enc_cfg *cfg = &stream->config.cfg;
vpx_codec_iter_t iter = NULL;
while ((pkt = vpx_codec_get_cx_data(&stream->encoder, &iter)))
{
static size_t fsize = 0;
static off_t ivf_header_pos = 0;
*got_data = 1;
switch (pkt->kind)
{
case VPX_CODEC_CX_FRAME_PKT:
if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT))
{
stream->frames_out++;
}
fprintf(stderr, " %6luF",
(unsigned long)pkt->data.frame.sz);
update_rate_histogram(&stream->rate_hist, cfg, pkt);
if(stream->config.write_webm)
{
/* Update the hash */
if(!stream->ebml.debug)
stream->hash = murmur(pkt->data.frame.buf,
pkt->data.frame.sz, stream->hash);
write_webm_block(&stream->ebml, cfg, pkt);
}
else
{
if (pkt->data.frame.partition_id <= 0)
{
ivf_header_pos = ftello(stream->file);
fsize = pkt->data.frame.sz;
write_ivf_frame_header(stream->file, pkt);
}
else
{
fsize += pkt->data.frame.sz;
if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT))
{
off_t currpos = ftello(stream->file);
fseeko(stream->file, ivf_header_pos, SEEK_SET);
write_ivf_frame_size(stream->file, fsize);
fseeko(stream->file, currpos, SEEK_SET);
}
}
fwrite(pkt->data.frame.buf, 1,
pkt->data.frame.sz, stream->file);
}
stream->nbytes += pkt->data.raw.sz;
break;
case VPX_CODEC_STATS_PKT:
stream->frames_out++;
fprintf(stderr, " %6luS",
(unsigned long)pkt->data.twopass_stats.sz);
stats_write(&stream->stats,
pkt->data.twopass_stats.buf,
pkt->data.twopass_stats.sz);
stream->nbytes += pkt->data.raw.sz;
break;
case VPX_CODEC_PSNR_PKT:
if (global->show_psnr)
{
int i;
stream->psnr_sse_total += pkt->data.psnr.sse[0];
stream->psnr_samples_total += pkt->data.psnr.samples[0];
for (i = 0; i < 4; i++)
{
fprintf(stderr, "%.3lf ", pkt->data.psnr.psnr[i]);
stream->psnr_totals[i] += pkt->data.psnr.psnr[i];
}
stream->psnr_count++;
}
break;
default:
break;
}
}
}
static void show_psnr(struct stream_state *stream)
{
int i;
double ovpsnr;
if (!stream->psnr_count)
return;
fprintf(stderr, "Stream %d PSNR (Overall/Avg/Y/U/V)", stream->index);
ovpsnr = vp8_mse2psnr(stream->psnr_samples_total, 255.0,
stream->psnr_sse_total);
fprintf(stderr, " %.3lf", ovpsnr);
for (i = 0; i < 4; i++)
{
fprintf(stderr, " %.3lf", stream->psnr_totals[i]/stream->psnr_count);
}
fprintf(stderr, "\n");
}
float usec_to_fps(uint64_t usec, unsigned int frames)
{
return usec > 0 ? (float)frames * 1000000.0 / (float)usec : 0;
}
int main(int argc, const char **argv_)
{
int pass;
vpx_image_t raw;
int frame_avail, got_data;
struct input_state input = {0};
struct global_config global;
struct stream_state *streams = NULL;
char **argv, **argi;
unsigned long cx_time = 0;
int stream_cnt = 0;
exec_name = argv_[0];
if (argc < 3)
usage_exit();
/* Setup default input stream settings */
input.framerate.num = 30;
input.framerate.den = 1;
input.use_i420 = 1;
/* First parse the global configuration values, because we want to apply
* other parameters on top of the default configuration provided by the
* codec.
*/
argv = argv_dup(argc - 1, argv_ + 1);
parse_global_config(&global, argv);
{
/* Now parse each stream's parameters. Using a local scope here
* due to the use of 'stream' as loop variable in FOREACH_STREAM
* loops
*/
struct stream_state *stream = NULL;
do
{
stream = new_stream(&global, stream);
stream_cnt++;
if(!streams)
streams = stream;
} while(parse_stream_params(&global, stream, argv));
}
/* Check for unrecognized options */
for (argi = argv; *argi; argi++)
if (argi[0][0] == '-' && argi[0][1])
die("Error: Unrecognized option %s\n", *argi);
/* Handle non-option arguments */
input.fn = argv[0];
if (!input.fn)
usage_exit();
for (pass = global.pass ? global.pass - 1 : 0; pass < global.passes; pass++)
{
int frames_in = 0;
open_input_file(&input, &global);
/* If the input file doesn't specify its w/h (raw files), try to get
* the data from the first stream's configuration.
*/
if(!input.w || !input.h)
FOREACH_STREAM({
if(stream->config.cfg.g_w && stream->config.cfg.g_h)
{
input.w = stream->config.cfg.g_w;
input.h = stream->config.cfg.g_h;
break;
}
});
/* Update stream configurations from the input file's parameters */
FOREACH_STREAM(set_stream_dimensions(stream, input.w, input.h));
FOREACH_STREAM(validate_stream_config(stream));
/* Ensure that --passes and --pass are consistent. If --pass is set and
* --passes=2, ensure --fpf was set.
*/
if (global.pass && global.passes == 2)
FOREACH_STREAM({
if(!stream->config.stats_fn)
die("Stream %d: Must specify --fpf when --pass=%d"
" and --passes=2\n", stream->index, global.pass);
});
/* Use the frame rate from the file only if none was specified
* on the command-line.
*/
if (!global.have_framerate)
global.framerate = input.framerate;
FOREACH_STREAM(set_default_kf_interval(stream, &global));
/* Show configuration */
if (global.verbose && pass == 0)
FOREACH_STREAM(show_stream_config(stream, &global, &input));
if(pass == (global.pass ? global.pass - 1 : 0)) {
if (input.file_type == FILE_TYPE_Y4M)
/*The Y4M reader does its own allocation.
Just initialize this here to avoid problems if we never read any
frames.*/
memset(&raw, 0, sizeof(raw));
else
vpx_img_alloc(&raw,
input.use_i420 ? VPX_IMG_FMT_I420
: VPX_IMG_FMT_YV12,
input.w, input.h, 32);
FOREACH_STREAM(init_rate_histogram(&stream->rate_hist,
&stream->config.cfg,
&global.framerate));
}
FOREACH_STREAM(open_output_file(stream, &global));
FOREACH_STREAM(setup_pass(stream, &global, pass));
FOREACH_STREAM(initialize_encoder(stream, &global));
frame_avail = 1;
got_data = 0;
while (frame_avail || got_data)
{
struct vpx_usec_timer timer;
if (!global.limit || frames_in < global.limit)
{
frame_avail = read_frame(&input, &raw);
if (frame_avail)
frames_in++;
if(stream_cnt == 1)
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7"PRId64"B \033[K",
pass + 1, global.passes, frames_in,
streams->frames_out, (int64_t)streams->nbytes);
else
fprintf(stderr,
"\rPass %d/%d frame %4d %7lu %s (%.2f fps)\033[K",
pass + 1, global.passes, frames_in,
cx_time > 9999999 ? cx_time / 1000 : cx_time,
cx_time > 9999999 ? "ms" : "us",
usec_to_fps(cx_time, frames_in));
}
else
frame_avail = 0;
vpx_usec_timer_start(&timer);
FOREACH_STREAM(encode_frame(stream, &global,
frame_avail ? &raw : NULL,
frames_in));
vpx_usec_timer_mark(&timer);
cx_time += vpx_usec_timer_elapsed(&timer);
FOREACH_STREAM(update_quantizer_histogram(stream));
got_data = 0;
FOREACH_STREAM(get_cx_data(stream, &global, &got_data));
fflush(stdout);
}
if(stream_cnt > 1)
fprintf(stderr, "\n");
FOREACH_STREAM(fprintf(
stderr,
"\rPass %d/%d frame %4d/%-4d %7"PRId64"B %7lub/f %7"PRId64"b/s"
" %7"PRId64" %s (%.2f fps)\033[K\n", pass + 1,
global.passes, frames_in, stream->frames_out, (int64_t)stream->nbytes,
frames_in ? (unsigned long)(stream->nbytes * 8 / frames_in) : 0,
frames_in ? (int64_t)stream->nbytes * 8
* (int64_t)global.framerate.num / global.framerate.den
/ frames_in
: 0,
stream->cx_time > 9999999 ? stream->cx_time / 1000 : stream->cx_time,
stream->cx_time > 9999999 ? "ms" : "us",
usec_to_fps(stream->cx_time, frames_in));
);
if (global.show_psnr)
FOREACH_STREAM(show_psnr(stream));
FOREACH_STREAM(vpx_codec_destroy(&stream->encoder));
close_input_file(&input);
FOREACH_STREAM(close_output_file(stream, global.codec->fourcc));
FOREACH_STREAM(stats_close(&stream->stats, global.passes-1));
if (global.pass)
break;
}
if (global.show_q_hist_buckets)
FOREACH_STREAM(show_q_histogram(stream->counts,
global.show_q_hist_buckets));
if (global.show_rate_hist_buckets)
FOREACH_STREAM(show_rate_histogram(&stream->rate_hist,
&stream->config.cfg,
global.show_rate_hist_buckets));
FOREACH_STREAM(destroy_rate_histogram(&stream->rate_hist));
vpx_img_free(&raw);
free(argv);
free(streams);
return EXIT_SUCCESS;
}