486 lines
12 KiB
486 lines
12 KiB
/*
|
|
* Copyright 2020 Collabora, Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial
|
|
* portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "weston-test-client-helper.h"
|
|
#include "weston-test-fixture-compositor.h"
|
|
|
|
struct setup_args {
|
|
struct fixture_metadata meta;
|
|
enum renderer_type renderer;
|
|
bool color_management;
|
|
};
|
|
|
|
static const int ALPHA_STEPS = 256;
|
|
static const int BLOCK_WIDTH = 3;
|
|
|
|
static const struct setup_args my_setup_args[] = {
|
|
{
|
|
.renderer = RENDERER_PIXMAN,
|
|
.color_management = false,
|
|
.meta.name = "pixman"
|
|
},
|
|
{
|
|
.renderer = RENDERER_GL,
|
|
.color_management = false,
|
|
.meta.name = "GL"
|
|
},
|
|
{
|
|
.renderer = RENDERER_GL,
|
|
.color_management = true,
|
|
.meta.name = "GL sRGB EOTF"
|
|
},
|
|
};
|
|
|
|
static enum test_result_code
|
|
fixture_setup(struct weston_test_harness *harness, const struct setup_args *arg)
|
|
{
|
|
struct compositor_setup setup;
|
|
|
|
compositor_setup_defaults(&setup);
|
|
setup.renderer = arg->renderer;
|
|
setup.width = BLOCK_WIDTH * ALPHA_STEPS;
|
|
setup.height = 16;
|
|
setup.shell = SHELL_TEST_DESKTOP;
|
|
|
|
if (arg->color_management) {
|
|
weston_ini_setup(&setup,
|
|
cfgln("[core]"),
|
|
cfgln("color-management=true"));
|
|
}
|
|
|
|
return weston_test_harness_execute_as_client(harness, &setup);
|
|
}
|
|
DECLARE_FIXTURE_SETUP_WITH_ARG(fixture_setup, my_setup_args, meta);
|
|
|
|
static void
|
|
set_opaque_rect(struct client *client,
|
|
struct surface *surface,
|
|
const struct rectangle *rect)
|
|
{
|
|
struct wl_region *region;
|
|
|
|
region = wl_compositor_create_region(client->wl_compositor);
|
|
wl_region_add(region, rect->x, rect->y, rect->width, rect->height);
|
|
wl_surface_set_opaque_region(surface->wl_surface, region);
|
|
wl_region_destroy(region);
|
|
}
|
|
|
|
static uint32_t
|
|
premult_color(uint32_t a, uint32_t r, uint32_t g, uint32_t b)
|
|
{
|
|
uint32_t c = 0;
|
|
|
|
c |= a << 24;
|
|
c |= (a * r / 255) << 16;
|
|
c |= (a * g / 255) << 8;
|
|
c |= a * b / 255;
|
|
|
|
return c;
|
|
}
|
|
|
|
static void
|
|
fill_alpha_pattern(struct buffer *buf)
|
|
{
|
|
void *pixels;
|
|
int stride_bytes;
|
|
int w, h;
|
|
int y;
|
|
|
|
assert(pixman_image_get_format(buf->image) == PIXMAN_a8r8g8b8);
|
|
|
|
pixels = pixman_image_get_data(buf->image);
|
|
stride_bytes = pixman_image_get_stride(buf->image);
|
|
w = pixman_image_get_width(buf->image);
|
|
h = pixman_image_get_height(buf->image);
|
|
|
|
assert(w == BLOCK_WIDTH * ALPHA_STEPS);
|
|
|
|
for (y = 0; y < h; y++) {
|
|
uint32_t *row = pixels + y * stride_bytes;
|
|
uint32_t step;
|
|
|
|
for (step = 0; step < (uint32_t)ALPHA_STEPS; step++) {
|
|
uint32_t alpha = step * 255 / (ALPHA_STEPS - 1);
|
|
uint32_t color;
|
|
int i;
|
|
|
|
color = premult_color(alpha, 0, 255 - alpha, 255);
|
|
for (i = 0; i < BLOCK_WIDTH; i++)
|
|
*row++ = color;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct color_float {
|
|
float r, g, b, a;
|
|
};
|
|
|
|
static struct color_float
|
|
a8r8g8b8_to_float(uint32_t v)
|
|
{
|
|
struct color_float cf;
|
|
|
|
cf.a = ((v >> 24) & 0xff) / 255.f;
|
|
cf.r = ((v >> 16) & 0xff) / 255.f;
|
|
cf.g = ((v >> 8) & 0xff) / 255.f;
|
|
cf.b = ((v >> 0) & 0xff) / 255.f;
|
|
|
|
return cf;
|
|
}
|
|
|
|
static void
|
|
unpremult_float(struct color_float *cf)
|
|
{
|
|
if (cf->a == 0.0f) {
|
|
cf->r = 0.0f;
|
|
cf->g = 0.0f;
|
|
cf->b = 0.0f;
|
|
} else {
|
|
cf->r /= cf->a;
|
|
cf->g /= cf->a;
|
|
cf->b /= cf->a;
|
|
}
|
|
}
|
|
|
|
static float
|
|
sRGB_EOTF(float e)
|
|
{
|
|
assert(e >= 0.0f);
|
|
assert(e <= 1.0f);
|
|
|
|
if (e <= 0.04045)
|
|
return e / 12.92;
|
|
else
|
|
return pow((e + 0.055) / 1.055, 2.4);
|
|
}
|
|
|
|
static void
|
|
sRGB_linearize(struct color_float *cf)
|
|
{
|
|
cf->r = sRGB_EOTF(cf->r);
|
|
cf->g = sRGB_EOTF(cf->g);
|
|
cf->b = sRGB_EOTF(cf->b);
|
|
}
|
|
|
|
static float
|
|
sRGB_EOTF_inv(float o)
|
|
{
|
|
assert(o >= 0.0f);
|
|
assert(o <= 1.0f);
|
|
|
|
if (o <= 0.04045 / 12.92)
|
|
return o * 12.92;
|
|
else
|
|
return pow(o, 1.0 / 2.4) * 1.055 - 0.055;
|
|
}
|
|
|
|
static void
|
|
sRGB_delinearize(struct color_float *cf)
|
|
{
|
|
cf->r = sRGB_EOTF_inv(cf->r);
|
|
cf->g = sRGB_EOTF_inv(cf->g);
|
|
cf->b = sRGB_EOTF_inv(cf->b);
|
|
}
|
|
|
|
static bool
|
|
compare_float(float ref, float dst, int x, const char *chan, float *max_diff)
|
|
{
|
|
#if 0
|
|
/*
|
|
* This file can be loaded in Octave for visualization.
|
|
*
|
|
* S = load('compare_float_dump.txt');
|
|
*
|
|
* rvec = S(S(:,1)==114, 2:3);
|
|
* gvec = S(S(:,1)==103, 2:3);
|
|
* bvec = S(S(:,1)==98, 2:3);
|
|
*
|
|
* figure
|
|
* subplot(3, 1, 1);
|
|
* plot(rvec(:,1), rvec(:,2) .* 255, 'r');
|
|
* subplot(3, 1, 2);
|
|
* plot(gvec(:,1), gvec(:,2) .* 255, 'g');
|
|
* subplot(3, 1, 3);
|
|
* plot(bvec(:,1), bvec(:,2) .* 255, 'b');
|
|
*/
|
|
static FILE *fp = NULL;
|
|
|
|
if (!fp)
|
|
fp = fopen("compare_float_dump.txt", "w");
|
|
fprintf(fp, "%d %d %f\n", chan[0], x, dst - ref);
|
|
fflush(fp);
|
|
#endif
|
|
|
|
float diff = fabsf(ref - dst);
|
|
|
|
if (diff > *max_diff)
|
|
*max_diff = diff;
|
|
|
|
/*
|
|
* Allow for +/- 1.5 code points of error in non-linear 8-bit channel
|
|
* value. This is necessary for the BLEND_LINEAR case.
|
|
*
|
|
* With llvmpipe, we could go as low as +/- 0.65 code points of error
|
|
* and still pass.
|
|
*
|
|
* AMD Polaris 11 would be ok with +/- 1.0 code points error threshold
|
|
* if not for one particular case of blending (a=254, r=0) into r=255,
|
|
* which results in error of 1.29 code points.
|
|
*/
|
|
if (diff < 1.5f / 255.f)
|
|
return true;
|
|
|
|
testlog("x=%d %s: ref %f != dst %f, delta %f\n",
|
|
x, chan, ref, dst, dst - ref);
|
|
|
|
return false;
|
|
}
|
|
|
|
enum blend_space {
|
|
BLEND_NONLINEAR,
|
|
BLEND_LINEAR,
|
|
};
|
|
|
|
static bool
|
|
verify_sRGB_blend_a8r8g8b8(uint32_t bg32, uint32_t fg32, uint32_t dst32,
|
|
int x, struct color_float *max_diff,
|
|
enum blend_space space)
|
|
{
|
|
struct color_float bg = a8r8g8b8_to_float(bg32);
|
|
struct color_float fg = a8r8g8b8_to_float(fg32);
|
|
struct color_float dst = a8r8g8b8_to_float(dst32);
|
|
struct color_float ref;
|
|
bool ok = true;
|
|
|
|
unpremult_float(&bg);
|
|
unpremult_float(&fg);
|
|
unpremult_float(&dst);
|
|
|
|
if (space == BLEND_LINEAR) {
|
|
sRGB_linearize(&bg);
|
|
sRGB_linearize(&fg);
|
|
}
|
|
|
|
ref.r = (1.0f - fg.a) * bg.r + fg.a * fg.r;
|
|
ref.g = (1.0f - fg.a) * bg.g + fg.a * fg.g;
|
|
ref.b = (1.0f - fg.a) * bg.b + fg.a * fg.b;
|
|
|
|
if (space == BLEND_LINEAR)
|
|
sRGB_delinearize(&ref);
|
|
|
|
ok = compare_float(ref.r, dst.r, x, "r", &max_diff->r) && ok;
|
|
ok = compare_float(ref.g, dst.g, x, "g", &max_diff->g) && ok;
|
|
ok = compare_float(ref.b, dst.b, x, "b", &max_diff->b) && ok;
|
|
|
|
return ok;
|
|
}
|
|
|
|
static uint8_t
|
|
red(uint32_t v)
|
|
{
|
|
return (v >> 16) & 0xff;
|
|
}
|
|
|
|
static uint8_t
|
|
blue(uint32_t v)
|
|
{
|
|
return v & 0xff;
|
|
}
|
|
|
|
static bool
|
|
pixels_monotonic(const uint32_t *row, int x)
|
|
{
|
|
bool ret = true;
|
|
|
|
if (red(row[x + 1]) > red(row[x])) {
|
|
testlog("pixel %d -> next: red value increases\n", x);
|
|
ret = false;
|
|
}
|
|
|
|
if (blue(row[x + 1]) < blue(row[x])) {
|
|
testlog("pixel %d -> next: blue value decreases\n", x);
|
|
ret = false;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *
|
|
get_middle_row(struct buffer *buf)
|
|
{
|
|
const int y = (BLOCK_WIDTH - 1) / 2; /* middle row */
|
|
void *pixels;
|
|
int stride_bytes;
|
|
|
|
assert(pixman_image_get_width(buf->image) >= BLOCK_WIDTH * ALPHA_STEPS);
|
|
assert(pixman_image_get_height(buf->image) >= BLOCK_WIDTH);
|
|
|
|
pixels = pixman_image_get_data(buf->image);
|
|
stride_bytes = pixman_image_get_stride(buf->image);
|
|
return pixels + y * stride_bytes;
|
|
}
|
|
|
|
static bool
|
|
check_blend_pattern(struct buffer *bg, struct buffer *fg, struct buffer *shot,
|
|
enum blend_space space)
|
|
{
|
|
uint32_t *bg_row = get_middle_row(bg);
|
|
uint32_t *fg_row = get_middle_row(fg);
|
|
uint32_t *shot_row = get_middle_row(shot);
|
|
struct color_float max_diff = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
bool ret = true;
|
|
int x;
|
|
|
|
for (x = 0; x < BLOCK_WIDTH * ALPHA_STEPS - 1; x++) {
|
|
if (!pixels_monotonic(shot_row, x))
|
|
ret = false;
|
|
|
|
if (!verify_sRGB_blend_a8r8g8b8(bg_row[x], fg_row[x],
|
|
shot_row[x], x, &max_diff,
|
|
space))
|
|
ret = false;
|
|
}
|
|
|
|
testlog("%s max diff: r=%f, g=%f, b=%f\n",
|
|
__func__, max_diff.r, max_diff.g, max_diff.b);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Test that alpha blending is roughly correct, and that an alpha ramp
|
|
* results in a strictly monotonic color ramp. This should ensure that any
|
|
* animation that varies alpha never goes "backwards" as that is easily
|
|
* noticeable.
|
|
*
|
|
* The background is a constant color. On top of that, there is an
|
|
* alpha-blended gradient with ramps in both alpha and color. Sub-surface
|
|
* ensures the correct positioning and stacking.
|
|
*
|
|
* The gradient consists of ALPHA_STEPS number of blocks. Block size is
|
|
* BLOCK_WIDTH x BLOCK_WIDTH and a block has a uniform color.
|
|
*
|
|
* In the blending result over x axis:
|
|
* - red goes from 1.0 to 0.0, monotonic
|
|
* - green is not monotonic
|
|
* - blue goes from 0.0 to 1.0, monotonic
|
|
*
|
|
* This test has two modes: BLEND_NONLINEAR and BLEND_LINEAR.
|
|
*
|
|
* BLEND_NONLINEAR does blending with pixel values as is, which are non-linear,
|
|
* and therefore result in "physically incorrect" blending result. Yet, people
|
|
* have accustomed to seeing this effect. This mode hits pipeline_premult()
|
|
* in fragment.glsl.
|
|
*
|
|
* BLEND_LINEAR has sRGB encoded pixels (non-linear). These are converted to
|
|
* linear light (optical) values, blended, and converted back to non-linear
|
|
* (electrical) values. This results in "physically more correct" blending
|
|
* result for some value of "physical". This mode hits pipeline_straight()
|
|
* in fragment.glsl, and tests even more things:
|
|
* - gl-renderer implementation of 1D LUT is correct
|
|
* - color-lcms instantiates the correct sRGB EOTF and inverse LUTs
|
|
* - color space conversions do not happen when both content and output are
|
|
* using their default color spaces
|
|
* - blending through gl-renderer shadow framebuffer
|
|
*/
|
|
TEST(alpha_blend)
|
|
{
|
|
const int width = BLOCK_WIDTH * ALPHA_STEPS;
|
|
const int height = BLOCK_WIDTH;
|
|
const pixman_color_t background_color = {
|
|
.red = 0xffff,
|
|
.green = 0x8080,
|
|
.blue = 0x0000,
|
|
.alpha = 0xffff
|
|
};
|
|
const struct setup_args *args;
|
|
struct client *client;
|
|
struct buffer *bg;
|
|
struct buffer *fg;
|
|
struct wl_subcompositor *subco;
|
|
struct wl_surface *surf;
|
|
struct wl_subsurface *sub;
|
|
struct buffer *shot;
|
|
bool match;
|
|
int seq_no;
|
|
enum blend_space space;
|
|
|
|
args = &my_setup_args[get_test_fixture_index()];
|
|
if (args->color_management) {
|
|
seq_no = 1;
|
|
space = BLEND_LINEAR;
|
|
} else {
|
|
seq_no = 0;
|
|
space = BLEND_NONLINEAR;
|
|
}
|
|
|
|
client = create_client();
|
|
subco = bind_to_singleton_global(client, &wl_subcompositor_interface, 1);
|
|
|
|
/* background window content */
|
|
bg = create_shm_buffer_a8r8g8b8(client, width, height);
|
|
fill_image_with_color(bg->image, &background_color);
|
|
|
|
/* background window, main surface */
|
|
client->surface = create_test_surface(client);
|
|
client->surface->width = width;
|
|
client->surface->height = height;
|
|
client->surface->buffer = bg; /* pass ownership */
|
|
set_opaque_rect(client, client->surface,
|
|
&(struct rectangle){ 0, 0, width, height });
|
|
|
|
/* foreground blended content */
|
|
fg = create_shm_buffer_a8r8g8b8(client, width, height);
|
|
fill_alpha_pattern(fg);
|
|
|
|
/* foreground window, sub-surface */
|
|
surf = wl_compositor_create_surface(client->wl_compositor);
|
|
sub = wl_subcompositor_get_subsurface(subco, surf, client->surface->wl_surface);
|
|
/* sub-surface defaults to position 0, 0, top-most, synchronized */
|
|
wl_surface_attach(surf, fg->proxy, 0, 0);
|
|
wl_surface_damage(surf, 0, 0, width, height);
|
|
wl_surface_commit(surf);
|
|
|
|
/* attach, damage, commit background window */
|
|
move_client(client, 0, 0);
|
|
|
|
shot = capture_screenshot_of_output(client);
|
|
assert(shot);
|
|
match = verify_image(shot, "alpha_blend", seq_no, NULL, seq_no);
|
|
assert(check_blend_pattern(bg, fg, shot, space));
|
|
assert(match);
|
|
|
|
buffer_destroy(shot);
|
|
|
|
wl_subsurface_destroy(sub);
|
|
wl_surface_destroy(surf);
|
|
buffer_destroy(fg);
|
|
wl_subcompositor_destroy(subco);
|
|
client_destroy(client); /* destroys bg */
|
|
}
|
|
|