|
|
|
package flate
|
|
|
|
|
|
|
|
import "fmt"
|
|
|
|
|
|
|
|
// fastGen maintains the table for matches,
|
|
|
|
// and the previous byte block for level 2.
|
|
|
|
// This is the generic implementation.
|
|
|
|
type fastEncL1 struct {
|
|
|
|
fastGen
|
|
|
|
table [tableSize]tableEntry
|
|
|
|
}
|
|
|
|
|
|
|
|
// EncodeL1 uses a similar algorithm to level 1
|
|
|
|
func (e *fastEncL1) Encode(dst *tokens, src []byte) {
|
|
|
|
const (
|
|
|
|
inputMargin = 12 - 1
|
|
|
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
|
|
|
)
|
|
|
|
if debugDeflate && e.cur < 0 {
|
|
|
|
panic(fmt.Sprint("e.cur < 0: ", e.cur))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Protect against e.cur wraparound.
|
|
|
|
for e.cur >= bufferReset {
|
|
|
|
if len(e.hist) == 0 {
|
|
|
|
for i := range e.table[:] {
|
|
|
|
e.table[i] = tableEntry{}
|
|
|
|
}
|
|
|
|
e.cur = maxMatchOffset
|
|
|
|
break
|
|
|
|
}
|
|
|
|
// Shift down everything in the table that isn't already too far away.
|
|
|
|
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
|
|
|
|
for i := range e.table[:] {
|
|
|
|
v := e.table[i].offset
|
|
|
|
if v <= minOff {
|
|
|
|
v = 0
|
|
|
|
} else {
|
|
|
|
v = v - e.cur + maxMatchOffset
|
|
|
|
}
|
|
|
|
e.table[i].offset = v
|
|
|
|
}
|
|
|
|
e.cur = maxMatchOffset
|
|
|
|
}
|
|
|
|
|
|
|
|
s := e.addBlock(src)
|
|
|
|
|
|
|
|
// This check isn't in the Snappy implementation, but there, the caller
|
|
|
|
// instead of the callee handles this case.
|
|
|
|
if len(src) < minNonLiteralBlockSize {
|
|
|
|
// We do not fill the token table.
|
|
|
|
// This will be picked up by caller.
|
|
|
|
dst.n = uint16(len(src))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// Override src
|
|
|
|
src = e.hist
|
|
|
|
nextEmit := s
|
|
|
|
|
|
|
|
// sLimit is when to stop looking for offset/length copies. The inputMargin
|
|
|
|
// lets us use a fast path for emitLiteral in the main loop, while we are
|
|
|
|
// looking for copies.
|
|
|
|
sLimit := int32(len(src) - inputMargin)
|
|
|
|
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
|
|
cv := load3232(src, s)
|
|
|
|
|
|
|
|
for {
|
|
|
|
const skipLog = 5
|
|
|
|
const doEvery = 2
|
|
|
|
|
|
|
|
nextS := s
|
|
|
|
var candidate tableEntry
|
|
|
|
for {
|
|
|
|
nextHash := hash(cv)
|
|
|
|
candidate = e.table[nextHash]
|
|
|
|
nextS = s + doEvery + (s-nextEmit)>>skipLog
|
|
|
|
if nextS > sLimit {
|
|
|
|
goto emitRemainder
|
|
|
|
}
|
|
|
|
|
|
|
|
now := load6432(src, nextS)
|
|
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur}
|
|
|
|
nextHash = hash(uint32(now))
|
|
|
|
|
|
|
|
offset := s - (candidate.offset - e.cur)
|
|
|
|
if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
|
|
|
|
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
|
|
|
|
break
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do one right away...
|
|
|
|
cv = uint32(now)
|
|
|
|
s = nextS
|
|
|
|
nextS++
|
|
|
|
candidate = e.table[nextHash]
|
|
|
|
now >>= 8
|
|
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur}
|
|
|
|
|
|
|
|
offset = s - (candidate.offset - e.cur)
|
|
|
|
if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
|
|
|
|
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
|
|
|
|
break
|
|
|
|
}
|
|
|
|
cv = uint32(now)
|
|
|
|
s = nextS
|
|
|
|
}
|
|
|
|
|
|
|
|
// A 4-byte match has been found. We'll later see if more than 4 bytes
|
|
|
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
|
|
|
|
// them as literal bytes.
|
|
|
|
for {
|
|
|
|
// Invariant: we have a 4-byte match at s, and no need to emit any
|
|
|
|
// literal bytes prior to s.
|
|
|
|
|
|
|
|
// Extend the 4-byte match as long as possible.
|
|
|
|
t := candidate.offset - e.cur
|
|
|
|
l := e.matchlenLong(s+4, t+4, src) + 4
|
|
|
|
|
|
|
|
// Extend backwards
|
|
|
|
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
|
|
|
|
s--
|
|
|
|
t--
|
|
|
|
l++
|
|
|
|
}
|
|
|
|
if nextEmit < s {
|
|
|
|
emitLiteral(dst, src[nextEmit:s])
|
|
|
|
}
|
|
|
|
|
|
|
|
// Save the match found
|
|
|
|
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
|
|
|
|
s += l
|
|
|
|
nextEmit = s
|
|
|
|
if nextS >= s {
|
|
|
|
s = nextS + 1
|
|
|
|
}
|
|
|
|
if s >= sLimit {
|
|
|
|
// Index first pair after match end.
|
|
|
|
if int(s+l+4) < len(src) {
|
|
|
|
cv := load3232(src, s)
|
|
|
|
e.table[hash(cv)] = tableEntry{offset: s + e.cur}
|
|
|
|
}
|
|
|
|
goto emitRemainder
|
|
|
|
}
|
|
|
|
|
|
|
|
// We could immediately start working at s now, but to improve
|
|
|
|
// compression we first update the hash table at s-2 and at s. If
|
|
|
|
// another emitCopy is not our next move, also calculate nextHash
|
|
|
|
// at s+1. At least on GOARCH=amd64, these three hash calculations
|
|
|
|
// are faster as one load64 call (with some shifts) instead of
|
|
|
|
// three load32 calls.
|
|
|
|
x := load6432(src, s-2)
|
|
|
|
o := e.cur + s - 2
|
|
|
|
prevHash := hash(uint32(x))
|
|
|
|
e.table[prevHash] = tableEntry{offset: o}
|
|
|
|
x >>= 16
|
|
|
|
currHash := hash(uint32(x))
|
|
|
|
candidate = e.table[currHash]
|
|
|
|
e.table[currHash] = tableEntry{offset: o + 2}
|
|
|
|
|
|
|
|
offset := s - (candidate.offset - e.cur)
|
|
|
|
if offset > maxMatchOffset || uint32(x) != load3232(src, candidate.offset-e.cur) {
|
|
|
|
cv = uint32(x >> 8)
|
|
|
|
s++
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
emitRemainder:
|
|
|
|
if int(nextEmit) < len(src) {
|
|
|
|
// If nothing was added, don't encode literals.
|
|
|
|
if dst.n == 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
emitLiteral(dst, src[nextEmit:])
|
|
|
|
}
|
|
|
|
}
|