// Copyright (c) 2017 Couchbase, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package geo import ( "fmt" "math" "github.com/blevesearch/bleve/v2/numeric" ) // GeoBits is the number of bits used for a single geo point // Currently this is 32bits for lon and 32bits for lat var GeoBits uint = 32 var minLon = -180.0 var minLat = -90.0 var maxLon = 180.0 var maxLat = 90.0 var minLonRad = minLon * degreesToRadian var minLatRad = minLat * degreesToRadian var maxLonRad = maxLon * degreesToRadian var maxLatRad = maxLat * degreesToRadian var geoTolerance = 1e-6 var lonScale = float64((uint64(0x1)<<GeoBits)-1) / 360.0 var latScale = float64((uint64(0x1)<<GeoBits)-1) / 180.0 var geoHashMaxLength = 12 // Point represents a geo point. type Point struct { Lon float64 `json:"lon"` Lat float64 `json:"lat"` } // MortonHash computes the morton hash value for the provided geo point // This point is ordered as lon, lat. func MortonHash(lon, lat float64) uint64 { return numeric.Interleave(scaleLon(lon), scaleLat(lat)) } func scaleLon(lon float64) uint64 { rv := uint64((lon - minLon) * lonScale) return rv } func scaleLat(lat float64) uint64 { rv := uint64((lat - minLat) * latScale) return rv } // MortonUnhashLon extracts the longitude value from the provided morton hash. func MortonUnhashLon(hash uint64) float64 { return unscaleLon(numeric.Deinterleave(hash)) } // MortonUnhashLat extracts the latitude value from the provided morton hash. func MortonUnhashLat(hash uint64) float64 { return unscaleLat(numeric.Deinterleave(hash >> 1)) } func unscaleLon(lon uint64) float64 { return (float64(lon) / lonScale) + minLon } func unscaleLat(lat uint64) float64 { return (float64(lat) / latScale) + minLat } // compareGeo will compare two float values and see if they are the same // taking into consideration a known geo tolerance. func compareGeo(a, b float64) float64 { compare := a - b if math.Abs(compare) <= geoTolerance { return 0 } return compare } // RectIntersects checks whether rectangles a and b intersect func RectIntersects(aMinX, aMinY, aMaxX, aMaxY, bMinX, bMinY, bMaxX, bMaxY float64) bool { return !(aMaxX < bMinX || aMinX > bMaxX || aMaxY < bMinY || aMinY > bMaxY) } // RectWithin checks whether box a is within box b func RectWithin(aMinX, aMinY, aMaxX, aMaxY, bMinX, bMinY, bMaxX, bMaxY float64) bool { rv := !(aMinX < bMinX || aMinY < bMinY || aMaxX > bMaxX || aMaxY > bMaxY) return rv } // BoundingBoxContains checks whether the lon/lat point is within the box func BoundingBoxContains(lon, lat, minLon, minLat, maxLon, maxLat float64) bool { return compareGeo(lon, minLon) >= 0 && compareGeo(lon, maxLon) <= 0 && compareGeo(lat, minLat) >= 0 && compareGeo(lat, maxLat) <= 0 } const degreesToRadian = math.Pi / 180 const radiansToDegrees = 180 / math.Pi // DegreesToRadians converts an angle in degrees to radians func DegreesToRadians(d float64) float64 { return d * degreesToRadian } // RadiansToDegrees converts an angle in radians to degress func RadiansToDegrees(r float64) float64 { return r * radiansToDegrees } var earthMeanRadiusMeters = 6371008.7714 func RectFromPointDistance(lon, lat, dist float64) (float64, float64, float64, float64, error) { err := checkLongitude(lon) if err != nil { return 0, 0, 0, 0, err } err = checkLatitude(lat) if err != nil { return 0, 0, 0, 0, err } radLon := DegreesToRadians(lon) radLat := DegreesToRadians(lat) radDistance := (dist + 7e-2) / earthMeanRadiusMeters minLatL := radLat - radDistance maxLatL := radLat + radDistance var minLonL, maxLonL float64 if minLatL > minLatRad && maxLatL < maxLatRad { deltaLon := asin(sin(radDistance) / cos(radLat)) minLonL = radLon - deltaLon if minLonL < minLonRad { minLonL += 2 * math.Pi } maxLonL = radLon + deltaLon if maxLonL > maxLonRad { maxLonL -= 2 * math.Pi } } else { // pole is inside distance minLatL = math.Max(minLatL, minLatRad) maxLatL = math.Min(maxLatL, maxLatRad) minLonL = minLonRad maxLonL = maxLonRad } return RadiansToDegrees(minLonL), RadiansToDegrees(maxLatL), RadiansToDegrees(maxLonL), RadiansToDegrees(minLatL), nil } func checkLatitude(latitude float64) error { if math.IsNaN(latitude) || latitude < minLat || latitude > maxLat { return fmt.Errorf("invalid latitude %f; must be between %f and %f", latitude, minLat, maxLat) } return nil } func checkLongitude(longitude float64) error { if math.IsNaN(longitude) || longitude < minLon || longitude > maxLon { return fmt.Errorf("invalid longitude %f; must be between %f and %f", longitude, minLon, maxLon) } return nil } func BoundingRectangleForPolygon(polygon []Point) ( float64, float64, float64, float64, error) { err := checkLongitude(polygon[0].Lon) if err != nil { return 0, 0, 0, 0, err } err = checkLatitude(polygon[0].Lat) if err != nil { return 0, 0, 0, 0, err } maxY, minY := polygon[0].Lat, polygon[0].Lat maxX, minX := polygon[0].Lon, polygon[0].Lon for i := 1; i < len(polygon); i++ { err := checkLongitude(polygon[i].Lon) if err != nil { return 0, 0, 0, 0, err } err = checkLatitude(polygon[i].Lat) if err != nil { return 0, 0, 0, 0, err } maxY = math.Max(maxY, polygon[i].Lat) minY = math.Min(minY, polygon[i].Lat) maxX = math.Max(maxX, polygon[i].Lon) minX = math.Min(minX, polygon[i].Lon) } return minX, maxY, maxX, minY, nil }