You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							755 lines
						
					
					
						
							20 KiB
						
					
					
				
			
		
		
	
	
							755 lines
						
					
					
						
							20 KiB
						
					
					
				| // The MIT License (MIT)
 | |
| 
 | |
| // Copyright (c) 2015 Spring, Inc.
 | |
| 
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| 
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| 
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| // - Based on https://github.com/oguzbilgic/fpd, which has the following license:
 | |
| // """
 | |
| // The MIT License (MIT)
 | |
| 
 | |
| // Copyright (c) 2013 Oguz Bilgic
 | |
| 
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy of
 | |
| // this software and associated documentation files (the "Software"), to deal in
 | |
| // the Software without restriction, including without limitation the rights to
 | |
| // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 | |
| // the Software, and to permit persons to whom the Software is furnished to do so,
 | |
| // subject to the following conditions:
 | |
| 
 | |
| // The above copyright notice and this permission notice shall be included in all
 | |
| // copies or substantial portions of the Software.
 | |
| 
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 | |
| // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 | |
| // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 | |
| // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
| // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| // """
 | |
| 
 | |
| // Copyright 2015 PingCAP, Inc.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package mysql
 | |
| 
 | |
| // Decimal implements an arbitrary precision fixed-point decimal.
 | |
| //
 | |
| // To use as part of a struct:
 | |
| //
 | |
| //     type Struct struct {
 | |
| //         Number Decimal
 | |
| //     }
 | |
| //
 | |
| // The zero-value of a Decimal is 0, as you would expect.
 | |
| //
 | |
| // The best way to create a new Decimal is to use decimal.NewFromString, ex:
 | |
| //
 | |
| //     n, err := decimal.NewFromString("-123.4567")
 | |
| //     n.String() // output: "-123.4567"
 | |
| //
 | |
| // NOTE: this can "only" represent numbers with a maximum of 2^31 digits
 | |
| // after the decimal point.
 | |
| 
 | |
| import (
 | |
| 	"database/sql/driver"
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 	"math/big"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| )
 | |
| 
 | |
| // DivisionPrecision is the number of decimal places in the result when it
 | |
| // doesn't divide exactly.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3)
 | |
| //     d1.String() // output: "0.6667"
 | |
| //     d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000)
 | |
| //     d2.String() // output: "0.0001"
 | |
| //     d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3)
 | |
| //     d3.String() // output: "6666.6666666666666667"
 | |
| //     decimal.DivisionPrecision = 3
 | |
| //     d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3)
 | |
| //     d4.String() // output: "0.6667"
 | |
| //
 | |
| const (
 | |
| 	MaxFractionDigits    = 30
 | |
| 	DivIncreasePrecision = 4
 | |
| )
 | |
| 
 | |
| // ZeroDecimal is zero constant, to make computations faster.
 | |
| var ZeroDecimal = NewDecimalFromInt(0, 1)
 | |
| 
 | |
| var zeroInt = big.NewInt(0)
 | |
| var oneInt = big.NewInt(1)
 | |
| var fiveInt = big.NewInt(5)
 | |
| var tenInt = big.NewInt(10)
 | |
| 
 | |
| // Decimal represents a fixed-point decimal. It is immutable.
 | |
| // number = value * 10 ^ exp
 | |
| type Decimal struct {
 | |
| 	value *big.Int
 | |
| 
 | |
| 	// this must be an int32, because we cast it to float64 during
 | |
| 	// calculations. If exp is 64 bit, we might lose precision.
 | |
| 	// If we cared about being able to represent every possible decimal, we
 | |
| 	// could make exp a *big.Int but it would hurt performance and numbers
 | |
| 	// like that are unrealistic.
 | |
| 	exp        int32
 | |
| 	fracDigits int32 // Number of fractional digits for string result.
 | |
| }
 | |
| 
 | |
| // ConvertToDecimal converts interface to decimal.
 | |
| func ConvertToDecimal(value interface{}) (Decimal, error) {
 | |
| 	switch v := value.(type) {
 | |
| 	case int8:
 | |
| 		return NewDecimalFromInt(int64(v), 0), nil
 | |
| 	case int16:
 | |
| 		return NewDecimalFromInt(int64(v), 0), nil
 | |
| 	case int32:
 | |
| 		return NewDecimalFromInt(int64(v), 0), nil
 | |
| 	case int64:
 | |
| 		return NewDecimalFromInt(int64(v), 0), nil
 | |
| 	case int:
 | |
| 		return NewDecimalFromInt(int64(v), 0), nil
 | |
| 	case uint8:
 | |
| 		return NewDecimalFromUint(uint64(v), 0), nil
 | |
| 	case uint16:
 | |
| 		return NewDecimalFromUint(uint64(v), 0), nil
 | |
| 	case uint32:
 | |
| 		return NewDecimalFromUint(uint64(v), 0), nil
 | |
| 	case uint64:
 | |
| 		return NewDecimalFromUint(uint64(v), 0), nil
 | |
| 	case uint:
 | |
| 		return NewDecimalFromUint(uint64(v), 0), nil
 | |
| 	case float32:
 | |
| 		return NewDecimalFromFloat(float64(v)), nil
 | |
| 	case float64:
 | |
| 		return NewDecimalFromFloat(float64(v)), nil
 | |
| 	case string:
 | |
| 		return ParseDecimal(v)
 | |
| 	case Decimal:
 | |
| 		return v, nil
 | |
| 	case Hex:
 | |
| 		return NewDecimalFromInt(int64(v.Value), 0), nil
 | |
| 	case Bit:
 | |
| 		return NewDecimalFromUint(uint64(v.Value), 0), nil
 | |
| 	case Enum:
 | |
| 		return NewDecimalFromUint(uint64(v.Value), 0), nil
 | |
| 	case Set:
 | |
| 		return NewDecimalFromUint(uint64(v.Value), 0), nil
 | |
| 	default:
 | |
| 		return Decimal{}, fmt.Errorf("can't convert %v to decimal", value)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // NewDecimalFromInt returns a new fixed-point decimal, value * 10 ^ exp.
 | |
| func NewDecimalFromInt(value int64, exp int32) Decimal {
 | |
| 	return Decimal{
 | |
| 		value:      big.NewInt(value),
 | |
| 		exp:        exp,
 | |
| 		fracDigits: fracDigitsDefault(exp),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // NewDecimalFromUint returns a new fixed-point decimal, value * 10 ^ exp.
 | |
| func NewDecimalFromUint(value uint64, exp int32) Decimal {
 | |
| 	return Decimal{
 | |
| 		value:      big.NewInt(0).SetUint64(value),
 | |
| 		exp:        exp,
 | |
| 		fracDigits: fracDigitsDefault(exp),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ParseDecimal returns a new Decimal from a string representation.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     d, err := ParseDecimal("-123.45")
 | |
| //     d2, err := ParseDecimal(".0001")
 | |
| //
 | |
| func ParseDecimal(value string) (Decimal, error) {
 | |
| 	var intString string
 | |
| 	var exp = int32(0)
 | |
| 
 | |
| 	n := strings.IndexAny(value, "eE")
 | |
| 	if n > 0 {
 | |
| 		// It is scientific notation, like 3.14e10
 | |
| 		expInt, err := strconv.Atoi(value[n+1:])
 | |
| 		if err != nil {
 | |
| 			return Decimal{}, fmt.Errorf("can't convert %s to decimal, incorrect exponent", value)
 | |
| 		}
 | |
| 		value = value[0:n]
 | |
| 		exp = int32(expInt)
 | |
| 	}
 | |
| 
 | |
| 	parts := strings.Split(value, ".")
 | |
| 	if len(parts) == 1 {
 | |
| 		// There is no decimal point, we can just parse the original string as
 | |
| 		// an int.
 | |
| 		intString = value
 | |
| 	} else if len(parts) == 2 {
 | |
| 		intString = parts[0] + parts[1]
 | |
| 		expInt := -len(parts[1])
 | |
| 		exp += int32(expInt)
 | |
| 	} else {
 | |
| 		return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
 | |
| 	}
 | |
| 
 | |
| 	dValue := new(big.Int)
 | |
| 	_, ok := dValue.SetString(intString, 10)
 | |
| 	if !ok {
 | |
| 		return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
 | |
| 	}
 | |
| 
 | |
| 	val := Decimal{
 | |
| 		value:      dValue,
 | |
| 		exp:        exp,
 | |
| 		fracDigits: fracDigitsDefault(exp),
 | |
| 	}
 | |
| 	if exp < -MaxFractionDigits {
 | |
| 		val = val.rescale(-MaxFractionDigits)
 | |
| 	}
 | |
| 	return val, nil
 | |
| }
 | |
| 
 | |
| // NewDecimalFromFloat converts a float64 to Decimal.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     NewDecimalFromFloat(123.45678901234567).String() // output: "123.4567890123456"
 | |
| //     NewDecimalFromFloat(.00000000000000001).String() // output: "0.00000000000000001"
 | |
| //
 | |
| // NOTE: this will panic on NaN, +/-inf.
 | |
| func NewDecimalFromFloat(value float64) Decimal {
 | |
| 	floor := math.Floor(value)
 | |
| 
 | |
| 	// fast path, where float is an int.
 | |
| 	if floor == value && !math.IsInf(value, 0) {
 | |
| 		return NewDecimalFromInt(int64(value), 0)
 | |
| 	}
 | |
| 
 | |
| 	str := strconv.FormatFloat(value, 'f', -1, 64)
 | |
| 	dec, err := ParseDecimal(str)
 | |
| 	if err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| 	return dec
 | |
| }
 | |
| 
 | |
| // NewDecimalFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
 | |
| // number of fractional digits.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     NewDecimalFromFloatWithExponent(123.456, -2).String() // output: "123.46"
 | |
| //
 | |
| func NewDecimalFromFloatWithExponent(value float64, exp int32) Decimal {
 | |
| 	mul := math.Pow(10, -float64(exp))
 | |
| 	floatValue := value * mul
 | |
| 	if math.IsNaN(floatValue) || math.IsInf(floatValue, 0) {
 | |
| 		panic(fmt.Sprintf("Cannot create a Decimal from %v", floatValue))
 | |
| 	}
 | |
| 	dValue := big.NewInt(round(floatValue))
 | |
| 
 | |
| 	return Decimal{
 | |
| 		value:      dValue,
 | |
| 		exp:        exp,
 | |
| 		fracDigits: fracDigitsDefault(exp),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // rescale returns a rescaled version of the decimal. Returned
 | |
| // decimal may be less precise if the given exponent is bigger
 | |
| // than the initial exponent of the Decimal.
 | |
| // NOTE: this will truncate, NOT round
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| // 	d := New(12345, -4)
 | |
| //	d2 := d.rescale(-1)
 | |
| //	d3 := d2.rescale(-4)
 | |
| //	println(d1)
 | |
| //	println(d2)
 | |
| //	println(d3)
 | |
| //
 | |
| // Output:
 | |
| //
 | |
| //	1.2345
 | |
| //	1.2
 | |
| //	1.2000
 | |
| //
 | |
| func (d Decimal) rescale(exp int32) Decimal {
 | |
| 	d.ensureInitialized()
 | |
| 	if exp < -MaxFractionDigits-1 {
 | |
| 		// Limit the number of digits but we can not call Round here because it is called by Round.
 | |
| 		// Limit it to MaxFractionDigits + 1 to make sure the final result is correct.
 | |
| 		exp = -MaxFractionDigits - 1
 | |
| 	}
 | |
| 	// Must convert exps to float64 before - to prevent overflow.
 | |
| 	diff := math.Abs(float64(exp) - float64(d.exp))
 | |
| 	value := new(big.Int).Set(d.value)
 | |
| 
 | |
| 	expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
 | |
| 	if exp > d.exp {
 | |
| 		value = value.Quo(value, expScale)
 | |
| 	} else if exp < d.exp {
 | |
| 		value = value.Mul(value, expScale)
 | |
| 	}
 | |
| 	return Decimal{
 | |
| 		value:      value,
 | |
| 		exp:        exp,
 | |
| 		fracDigits: d.fracDigits,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Abs returns the absolute value of the decimal.
 | |
| func (d Decimal) Abs() Decimal {
 | |
| 	d.ensureInitialized()
 | |
| 	d2Value := new(big.Int).Abs(d.value)
 | |
| 	return Decimal{
 | |
| 		value:      d2Value,
 | |
| 		exp:        d.exp,
 | |
| 		fracDigits: d.fracDigits,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Add returns d + d2.
 | |
| func (d Decimal) Add(d2 Decimal) Decimal {
 | |
| 	baseExp := min(d.exp, d2.exp)
 | |
| 	rd := d.rescale(baseExp)
 | |
| 	rd2 := d2.rescale(baseExp)
 | |
| 
 | |
| 	d3Value := new(big.Int).Add(rd.value, rd2.value)
 | |
| 	return Decimal{
 | |
| 		value:      d3Value,
 | |
| 		exp:        baseExp,
 | |
| 		fracDigits: fracDigitsPlus(d.fracDigits, d2.fracDigits),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Sub returns d - d2.
 | |
| func (d Decimal) Sub(d2 Decimal) Decimal {
 | |
| 	baseExp := min(d.exp, d2.exp)
 | |
| 	rd := d.rescale(baseExp)
 | |
| 	rd2 := d2.rescale(baseExp)
 | |
| 
 | |
| 	d3Value := new(big.Int).Sub(rd.value, rd2.value)
 | |
| 	return Decimal{
 | |
| 		value:      d3Value,
 | |
| 		exp:        baseExp,
 | |
| 		fracDigits: fracDigitsPlus(d.fracDigits, d2.fracDigits),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Mul returns d * d2.
 | |
| func (d Decimal) Mul(d2 Decimal) Decimal {
 | |
| 	d.ensureInitialized()
 | |
| 	d2.ensureInitialized()
 | |
| 
 | |
| 	expInt64 := int64(d.exp) + int64(d2.exp)
 | |
| 	if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
 | |
| 		// It is better to panic than to give incorrect results, as
 | |
| 		// decimals are usually used for money.
 | |
| 		panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
 | |
| 	}
 | |
| 
 | |
| 	d3Value := new(big.Int).Mul(d.value, d2.value)
 | |
| 	val := Decimal{
 | |
| 		value:      d3Value,
 | |
| 		exp:        int32(expInt64),
 | |
| 		fracDigits: fracDigitsMul(d.fracDigits, d2.fracDigits),
 | |
| 	}
 | |
| 	if val.exp < -(MaxFractionDigits) {
 | |
| 		val = val.Round(MaxFractionDigits)
 | |
| 	}
 | |
| 	return val
 | |
| }
 | |
| 
 | |
| // Div returns d / d2. If it doesn't divide exactly, the result will have
 | |
| // DivisionPrecision digits after the decimal point.
 | |
| func (d Decimal) Div(d2 Decimal) Decimal {
 | |
| 	// Division is hard, use Rat to do it.
 | |
| 	ratNum := d.Rat()
 | |
| 	ratDenom := d2.Rat()
 | |
| 
 | |
| 	quoRat := big.NewRat(0, 1).Quo(ratNum, ratDenom)
 | |
| 
 | |
| 	// Converting from Rat to Decimal inefficiently for now.
 | |
| 	ret, err := ParseDecimal(quoRat.FloatString(MaxFractionDigits + 1))
 | |
| 	if err != nil {
 | |
| 		panic(err) // This should never happen.
 | |
| 	}
 | |
| 	// To pass test "2 / 3 * 3 < 2" -> "1".
 | |
| 	ret = ret.Truncate(MaxFractionDigits)
 | |
| 	ret.fracDigits = fracDigitsDiv(d.fracDigits)
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Cmp compares the numbers represented by d and d2, and returns:
 | |
| //
 | |
| //     -1 if d <  d2
 | |
| //      0 if d == d2
 | |
| //     +1 if d >  d2
 | |
| //
 | |
| func (d Decimal) Cmp(d2 Decimal) int {
 | |
| 	baseExp := min(d.exp, d2.exp)
 | |
| 	rd := d.rescale(baseExp)
 | |
| 	rd2 := d2.rescale(baseExp)
 | |
| 
 | |
| 	return rd.value.Cmp(rd2.value)
 | |
| }
 | |
| 
 | |
| // Equals returns whether the numbers represented by d and d2 are equal.
 | |
| func (d Decimal) Equals(d2 Decimal) bool {
 | |
| 	return d.Cmp(d2) == 0
 | |
| }
 | |
| 
 | |
| // Exponent returns the exponent, or scale component of the decimal.
 | |
| func (d Decimal) Exponent() int32 {
 | |
| 	return d.exp
 | |
| }
 | |
| 
 | |
| // FracDigits returns the number of fractional digits of the decimal.
 | |
| func (d Decimal) FracDigits() int32 {
 | |
| 	return d.fracDigits
 | |
| }
 | |
| 
 | |
| // IntPart returns the integer component of the decimal.
 | |
| func (d Decimal) IntPart() int64 {
 | |
| 	scaledD := d.rescale(0)
 | |
| 	return scaledD.value.Int64()
 | |
| }
 | |
| 
 | |
| // Rat returns a rational number representation of the decimal.
 | |
| func (d Decimal) Rat() *big.Rat {
 | |
| 	d.ensureInitialized()
 | |
| 	if d.exp <= 0 {
 | |
| 		// It must negate after casting to prevent int32 overflow.
 | |
| 		denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil)
 | |
| 		return new(big.Rat).SetFrac(d.value, denom)
 | |
| 	}
 | |
| 
 | |
| 	mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil)
 | |
| 	num := new(big.Int).Mul(d.value, mul)
 | |
| 	return new(big.Rat).SetFrac(num, oneInt)
 | |
| }
 | |
| 
 | |
| // Float64 returns the nearest float64 value for d and a bool indicating
 | |
| // whether f represents d exactly.
 | |
| // For more details, see the documentation for big.Rat.Float64.
 | |
| func (d Decimal) Float64() (f float64, exact bool) {
 | |
| 	return d.Rat().Float64()
 | |
| }
 | |
| 
 | |
| // String returns the string representation of the decimal
 | |
| // with the fixed point.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     d := New(-12345, -3)
 | |
| //     println(d.String())
 | |
| //
 | |
| // Output:
 | |
| //
 | |
| //     -12.345
 | |
| //
 | |
| func (d Decimal) String() string {
 | |
| 	return d.StringFixed(d.fracDigits)
 | |
| }
 | |
| 
 | |
| // StringFixed returns a rounded fixed-point string with places digits after
 | |
| // the decimal point.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| // 	   NewFromFloat(0).StringFixed(2) // output: "0.00"
 | |
| // 	   NewFromFloat(0).StringFixed(0) // output: "0"
 | |
| // 	   NewFromFloat(5.45).StringFixed(0) // output: "5"
 | |
| // 	   NewFromFloat(5.45).StringFixed(1) // output: "5.5"
 | |
| // 	   NewFromFloat(5.45).StringFixed(2) // output: "5.45"
 | |
| // 	   NewFromFloat(5.45).StringFixed(3) // output: "5.450"
 | |
| // 	   NewFromFloat(545).StringFixed(-1) // output: "550"
 | |
| //
 | |
| func (d Decimal) StringFixed(places int32) string {
 | |
| 	rounded := d.Round(places)
 | |
| 	return rounded.string(false)
 | |
| }
 | |
| 
 | |
| // Round rounds the decimal to places decimal places.
 | |
| // If places < 0, it will round the integer part to the nearest 10^(-places).
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| // 	   NewFromFloat(5.45).Round(1).String() // output: "5.5"
 | |
| // 	   NewFromFloat(545).Round(-1).String() // output: "550"
 | |
| //
 | |
| func (d Decimal) Round(places int32) Decimal {
 | |
| 	// Truncate to places + 1.
 | |
| 	ret := d.rescale(-places - 1)
 | |
| 
 | |
| 	// Add sign(d) * 0.5.
 | |
| 	if ret.value.Sign() < 0 {
 | |
| 		ret.value.Sub(ret.value, fiveInt)
 | |
| 	} else {
 | |
| 		ret.value.Add(ret.value, fiveInt)
 | |
| 	}
 | |
| 
 | |
| 	// Floor for positive numbers, Ceil for negative numbers.
 | |
| 	_, m := ret.value.DivMod(ret.value, tenInt, new(big.Int))
 | |
| 	ret.exp++
 | |
| 	if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 {
 | |
| 		ret.value.Add(ret.value, oneInt)
 | |
| 	}
 | |
| 	ret.fracDigits = places
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Floor returns the nearest integer value less than or equal to d.
 | |
| func (d Decimal) Floor() Decimal {
 | |
| 	d.ensureInitialized()
 | |
| 
 | |
| 	exp := big.NewInt(10)
 | |
| 
 | |
| 	// It must negate after casting to prevent int32 overflow.
 | |
| 	exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
 | |
| 
 | |
| 	z := new(big.Int).Div(d.value, exp)
 | |
| 	return Decimal{value: z, exp: 0}
 | |
| }
 | |
| 
 | |
| // Ceil returns the nearest integer value greater than or equal to d.
 | |
| func (d Decimal) Ceil() Decimal {
 | |
| 	d.ensureInitialized()
 | |
| 
 | |
| 	exp := big.NewInt(10)
 | |
| 
 | |
| 	// It must negate after casting to prevent int32 overflow.
 | |
| 	exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
 | |
| 
 | |
| 	z, m := new(big.Int).DivMod(d.value, exp, new(big.Int))
 | |
| 	if m.Cmp(zeroInt) != 0 {
 | |
| 		z.Add(z, oneInt)
 | |
| 	}
 | |
| 	return Decimal{value: z, exp: 0}
 | |
| }
 | |
| 
 | |
| // Truncate truncates off digits from the number, without rounding.
 | |
| //
 | |
| // NOTE: precision is the last digit that will not be truncated (must be >= 0).
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     decimal.NewFromString("123.456").Truncate(2).String() // "123.45"
 | |
| //
 | |
| func (d Decimal) Truncate(precision int32) Decimal {
 | |
| 	d.ensureInitialized()
 | |
| 	if precision >= 0 && -precision > d.exp {
 | |
| 		d = d.rescale(-precision)
 | |
| 	}
 | |
| 	d.fracDigits = precision
 | |
| 	return d
 | |
| }
 | |
| 
 | |
| // UnmarshalJSON implements the json.Unmarshaler interface.
 | |
| func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error {
 | |
| 	str, err := unquoteIfQuoted(decimalBytes)
 | |
| 	if err != nil {
 | |
| 		return fmt.Errorf("Error decoding string '%s': %s", decimalBytes, err)
 | |
| 	}
 | |
| 
 | |
| 	decimal, err := ParseDecimal(str)
 | |
| 	*d = decimal
 | |
| 	if err != nil {
 | |
| 		return fmt.Errorf("Error decoding string '%s': %s", str, err)
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // MarshalJSON implements the json.Marshaler interface.
 | |
| func (d Decimal) MarshalJSON() ([]byte, error) {
 | |
| 	str := "\"" + d.String() + "\""
 | |
| 	return []byte(str), nil
 | |
| }
 | |
| 
 | |
| // Scan implements the sql.Scanner interface for database deserialization.
 | |
| func (d *Decimal) Scan(value interface{}) error {
 | |
| 	str, err := unquoteIfQuoted(value)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	*d, err = ParseDecimal(str)
 | |
| 
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| // Value implements the driver.Valuer interface for database serialization.
 | |
| func (d Decimal) Value() (driver.Value, error) {
 | |
| 	return d.String(), nil
 | |
| }
 | |
| 
 | |
| // BigIntValue returns the *bit.Int value member of decimal.
 | |
| func (d Decimal) BigIntValue() *big.Int {
 | |
| 	return d.value
 | |
| }
 | |
| 
 | |
| // UnmarshalText implements the encoding.TextUnmarshaler interface for XML
 | |
| // deserialization.
 | |
| func (d *Decimal) UnmarshalText(text []byte) error {
 | |
| 	str := string(text)
 | |
| 
 | |
| 	dec, err := ParseDecimal(str)
 | |
| 	*d = dec
 | |
| 	if err != nil {
 | |
| 		return fmt.Errorf("Error decoding string '%s': %s", str, err)
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // MarshalText implements the encoding.TextMarshaler interface for XML
 | |
| // serialization.
 | |
| func (d Decimal) MarshalText() (text []byte, err error) {
 | |
| 	return []byte(d.String()), nil
 | |
| }
 | |
| 
 | |
| // StringScaled first scales the decimal then calls .String() on it.
 | |
| // NOTE: buggy, unintuitive, and DEPRECATED! Use StringFixed instead.
 | |
| func (d Decimal) StringScaled(exp int32) string {
 | |
| 	return d.rescale(exp).String()
 | |
| }
 | |
| 
 | |
| func (d Decimal) string(trimTrailingZeros bool) string {
 | |
| 	if d.exp >= 0 {
 | |
| 		return d.rescale(0).value.String()
 | |
| 	}
 | |
| 
 | |
| 	abs := new(big.Int).Abs(d.value)
 | |
| 	str := abs.String()
 | |
| 
 | |
| 	var intPart, fractionalPart string
 | |
| 
 | |
| 	// this cast to int will cause bugs if d.exp == INT_MIN
 | |
| 	// and you are on a 32-bit machine. Won't fix this super-edge case.
 | |
| 	dExpInt := int(d.exp)
 | |
| 	if len(str) > -dExpInt {
 | |
| 		intPart = str[:len(str)+dExpInt]
 | |
| 		fractionalPart = str[len(str)+dExpInt:]
 | |
| 	} else {
 | |
| 		intPart = "0"
 | |
| 
 | |
| 		num0s := -dExpInt - len(str)
 | |
| 		fractionalPart = strings.Repeat("0", num0s) + str
 | |
| 	}
 | |
| 
 | |
| 	if trimTrailingZeros {
 | |
| 		i := len(fractionalPart) - 1
 | |
| 		for ; i >= 0; i-- {
 | |
| 			if fractionalPart[i] != '0' {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		fractionalPart = fractionalPart[:i+1]
 | |
| 	}
 | |
| 
 | |
| 	number := intPart
 | |
| 	if len(fractionalPart) > 0 {
 | |
| 		number += "." + fractionalPart
 | |
| 	}
 | |
| 
 | |
| 	if d.value.Sign() < 0 {
 | |
| 		return "-" + number
 | |
| 	}
 | |
| 
 | |
| 	return number
 | |
| }
 | |
| 
 | |
| func (d *Decimal) ensureInitialized() {
 | |
| 	if d.value == nil {
 | |
| 		d.value = new(big.Int)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func min(x, y int32) int32 {
 | |
| 	if x >= y {
 | |
| 		return y
 | |
| 	}
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| func max(x, y int32) int32 {
 | |
| 	if x >= y {
 | |
| 		return x
 | |
| 	}
 | |
| 	return y
 | |
| }
 | |
| 
 | |
| func round(n float64) int64 {
 | |
| 	if n < 0 {
 | |
| 		return int64(n - 0.5)
 | |
| 	}
 | |
| 	return int64(n + 0.5)
 | |
| }
 | |
| 
 | |
| func unquoteIfQuoted(value interface{}) (string, error) {
 | |
| 	bytes, ok := value.([]byte)
 | |
| 	if !ok {
 | |
| 		return "", fmt.Errorf("Could not convert value '%+v' to byte array",
 | |
| 			value)
 | |
| 	}
 | |
| 
 | |
| 	// If the amount is quoted, strip the quotes.
 | |
| 	if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' {
 | |
| 		bytes = bytes[1 : len(bytes)-1]
 | |
| 	}
 | |
| 	return string(bytes), nil
 | |
| }
 | |
| 
 | |
| func fracDigitsDefault(exp int32) int32 {
 | |
| 	if exp < 0 {
 | |
| 		return min(MaxFractionDigits, -exp)
 | |
| 	}
 | |
| 
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| func fracDigitsPlus(x, y int32) int32 {
 | |
| 	return max(x, y)
 | |
| }
 | |
| 
 | |
| func fracDigitsDiv(x int32) int32 {
 | |
| 	return min(x+DivIncreasePrecision, MaxFractionDigits)
 | |
| }
 | |
| 
 | |
| func fracDigitsMul(a, b int32) int32 {
 | |
| 	return min(MaxFractionDigits, a+b)
 | |
| }
 | |
| 
 |