You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							77 lines
						
					
					
						
							2.3 KiB
						
					
					
				
			
		
		
	
	
							77 lines
						
					
					
						
							2.3 KiB
						
					
					
				package dns
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto"
 | 
						|
	"crypto/ecdsa"
 | 
						|
	"crypto/ed25519"
 | 
						|
	"crypto/rsa"
 | 
						|
	"math/big"
 | 
						|
	"strconv"
 | 
						|
)
 | 
						|
 | 
						|
const format = "Private-key-format: v1.3\n"
 | 
						|
 | 
						|
var bigIntOne = big.NewInt(1)
 | 
						|
 | 
						|
// PrivateKeyString converts a PrivateKey to a string. This string has the same
 | 
						|
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
 | 
						|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY.
 | 
						|
// It supports *rsa.PrivateKey, *ecdsa.PrivateKey and ed25519.PrivateKey.
 | 
						|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
 | 
						|
	algorithm := strconv.Itoa(int(r.Algorithm))
 | 
						|
	algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
 | 
						|
 | 
						|
	switch p := p.(type) {
 | 
						|
	case *rsa.PrivateKey:
 | 
						|
		modulus := toBase64(p.PublicKey.N.Bytes())
 | 
						|
		e := big.NewInt(int64(p.PublicKey.E))
 | 
						|
		publicExponent := toBase64(e.Bytes())
 | 
						|
		privateExponent := toBase64(p.D.Bytes())
 | 
						|
		prime1 := toBase64(p.Primes[0].Bytes())
 | 
						|
		prime2 := toBase64(p.Primes[1].Bytes())
 | 
						|
		// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
 | 
						|
		// and from: http://code.google.com/p/go/issues/detail?id=987
 | 
						|
		p1 := new(big.Int).Sub(p.Primes[0], bigIntOne)
 | 
						|
		q1 := new(big.Int).Sub(p.Primes[1], bigIntOne)
 | 
						|
		exp1 := new(big.Int).Mod(p.D, p1)
 | 
						|
		exp2 := new(big.Int).Mod(p.D, q1)
 | 
						|
		coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0])
 | 
						|
 | 
						|
		exponent1 := toBase64(exp1.Bytes())
 | 
						|
		exponent2 := toBase64(exp2.Bytes())
 | 
						|
		coefficient := toBase64(coeff.Bytes())
 | 
						|
 | 
						|
		return format +
 | 
						|
			"Algorithm: " + algorithm + "\n" +
 | 
						|
			"Modulus: " + modulus + "\n" +
 | 
						|
			"PublicExponent: " + publicExponent + "\n" +
 | 
						|
			"PrivateExponent: " + privateExponent + "\n" +
 | 
						|
			"Prime1: " + prime1 + "\n" +
 | 
						|
			"Prime2: " + prime2 + "\n" +
 | 
						|
			"Exponent1: " + exponent1 + "\n" +
 | 
						|
			"Exponent2: " + exponent2 + "\n" +
 | 
						|
			"Coefficient: " + coefficient + "\n"
 | 
						|
 | 
						|
	case *ecdsa.PrivateKey:
 | 
						|
		var intlen int
 | 
						|
		switch r.Algorithm {
 | 
						|
		case ECDSAP256SHA256:
 | 
						|
			intlen = 32
 | 
						|
		case ECDSAP384SHA384:
 | 
						|
			intlen = 48
 | 
						|
		}
 | 
						|
		private := toBase64(intToBytes(p.D, intlen))
 | 
						|
		return format +
 | 
						|
			"Algorithm: " + algorithm + "\n" +
 | 
						|
			"PrivateKey: " + private + "\n"
 | 
						|
 | 
						|
	case ed25519.PrivateKey:
 | 
						|
		private := toBase64(p.Seed())
 | 
						|
		return format +
 | 
						|
			"Algorithm: " + algorithm + "\n" +
 | 
						|
			"PrivateKey: " + private + "\n"
 | 
						|
 | 
						|
	default:
 | 
						|
		return ""
 | 
						|
	}
 | 
						|
}
 | 
						|
 |