Libraries and applications that depend on Epoxy currently have no way to
safely degrade functionality if they are used on a platform without GLX
support; the only way to achieve that is to perform a symbol check
themselves, by essentially copying what Epoxy already does.
By exposing `epoxy_has_glx()`, those libraries and applications now have
the chance of querying Epoxy itself and gracefully handle failure.
To avoid a symbols file on Windows, Epoxy annotates all the publicly
visible symbols directly in the source, but uses the default symbol
visibility everywhere else. This means that only some symbols are
annotated as `EPOXY_IMPORTEXPORT`, and generally only on Windows.
Additionally, Epoxy has a private 'PUBLIC' pre-processor macro for
internal use, which duplicates the `EPOXY_IMPORTEXPORT` but contains
more logic to detect GCC, in case we're building with GCC on Windows.
This would be enough, except that EGL is also available on Windows,
which means we'd have to annotate the exported `epoxy_*` API inside
epoxy/egl.h as well. At that point, though, we should probably avoid
any confusion, and adopt a single symbol visibility policy across the
board.
This requires some surgery of the generated and common dispatch sources,
but cuts down the overall complexity:
- there is only one annotation, `EPOXY_PUBLIC`, used everywhere
- the annotation detection is done at Epoxy configuration time
- only annotated symbols are public, on every platform
- annotated symbols are immediately visible from the header
Certain X server do not have GLX enabled or supported, such as x2go. We
can handle this case gracefully inside libepoxy.
Signed-off-by: Emmanuele Bassi <ebassi@gnome.org>
Most of the changes that happened after commit 8bbc0d40 broke epoxy
pretty much irreparably because of the CMake build and the attempt at
making libepoxy a static library that can be copy-pasted into another
project without generating files.
Since all the commits are entangled, and are full of unrelated changes,
we cannot simply do a localized set of reverts; instead, we need to hit
the reset button.
From this point forward, we're going to improve libepoxy's build while
attempting to keep the existing build system working. This may mean
reinstating the CMake build system at a later date.
The dlopen bits are left in place, but the functions required the
types, and in the case of EGL, the types require that the platform
header actually exists.