A port of the Qualcomm Android bootctrl HAL for musl/glibc userspace.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qbootctl/boot_control_impl_qcom.cpp

718 lines
21 KiB

/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <map>
#include <list>
#include <string>
#include <vector>
#include <errno.h>
#include <regex>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include "boot_control.h"
#include "gpt-utils.h"
#define BOOTDEV_DIR "/dev/disk/by-partlabel"
#define BOOT_IMG_PTN_NAME "boot_"
#define LUN_NAME_END_LOC 14
#define BOOT_SLOT_PROP "slot_suffix"
#define MAX_CMDLINE_SIZE 4096
#define SLOT_ACTIVE 1
#define SLOT_INACTIVE 2
#define UPDATE_SLOT(pentry, guid, slot_state) ({ \
memcpy(pentry, guid, TYPE_GUID_SIZE); \
if (slot_state == SLOT_ACTIVE)\
*(pentry + AB_FLAG_OFFSET) = AB_SLOT_ACTIVE_VAL; \
else if (slot_state == SLOT_INACTIVE) \
*(pentry + AB_FLAG_OFFSET) = (*(pentry + AB_FLAG_OFFSET)& \
~AB_PARTITION_ATTR_SLOT_ACTIVE); \
})
using namespace std;
const char *slot_suffix_arr[] = {
AB_SLOT_A_SUFFIX,
AB_SLOT_B_SUFFIX,
NULL};
enum part_attr_type {
ATTR_SLOT_ACTIVE = 0,
ATTR_BOOT_SUCCESSFUL,
ATTR_UNBOOTABLE,
};
void get_kernel_cmdline_arg(const char * arg, const char* buf, const char* def)
{
// int fd = open("/proc/cmdline\n", O_RDONLY);
// char buf[MAX_CMDLINE_SIZE];
// int rc = read(fd, &buf, MAX_CMDLINE_SIZE);
// close(fd);
// std::string cmdline(buf);
// std::regex rgx(std::string(arg).append("=.+"))
printf("%s\n", __func__);
buf = def;
}
void boot_control_init(struct boot_control_module *module)
{
printf("%s\n", __func__);
if (!module) {
fprintf(stderr, "Invalid argument passed to %s\n", __func__);
return;
}
return;
}
//Get the value of one of the attribute fields for a partition.
static int get_partition_attribute(char *partname,
enum part_attr_type part_attr)
{
printf("%s\n", __func__);
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
int retval = -1;
uint8_t *attr = NULL;
if (!partname)
goto error;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n", __func__);
goto error;
}
printf("gpt_disk_get_disk_info\n");
if (gpt_disk_get_disk_info(partname, disk)) {
fprintf(stderr, "%s: Failed to get disk info\n", __func__);
goto error;
}
pentry = gpt_disk_get_pentry(disk, partname, PRIMARY_GPT);
if (!pentry) {
fprintf(stderr, "%s: pentry does not exist in disk struct\n",
__func__);
goto error;
}
attr = pentry + AB_FLAG_OFFSET;
printf("gpt_disk_get_pentry: 0x%x", *attr);
if (part_attr == ATTR_SLOT_ACTIVE)
retval = !!(*attr & AB_PARTITION_ATTR_SLOT_ACTIVE);
else if (part_attr == ATTR_BOOT_SUCCESSFUL)
retval = !!(*attr & AB_PARTITION_ATTR_BOOT_SUCCESSFUL);
else if (part_attr == ATTR_UNBOOTABLE)
retval = !!(*attr & AB_PARTITION_ATTR_UNBOOTABLE);
else
retval = -1;
gpt_disk_free(disk);
return retval;
error:
if (disk)
gpt_disk_free(disk);
return retval;
}
//Set a particular attribute for all the partitions in a
//slot
static int update_slot_attribute(const char *slot,
enum part_attr_type ab_attr)
{
unsigned int i = 0;
char buf[PATH_MAX];
struct stat st;
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
uint8_t *pentry_bak = NULL;
int rc = -1;
uint8_t *attr = NULL;
uint8_t *attr_bak = NULL;
char partName[MAX_GPT_NAME_SIZE + 1] = {0};
const char ptn_list[][MAX_GPT_NAME_SIZE] = { AB_PTN_LIST };
int slot_name_valid = 0;
printf("%s\n", __func__);
if (!slot) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
for (i = 0; slot_suffix_arr[i] != NULL; i++)
{
if (!strncmp(slot, slot_suffix_arr[i],
strlen(slot_suffix_arr[i])))
slot_name_valid = 1;
}
if (!slot_name_valid) {
fprintf(stderr, "%s: Invalid slot name\n", __func__);
goto error;
}
for (i=0; i < ARRAY_SIZE(ptn_list); i++) {
memset(buf, '\0', sizeof(buf));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1,
"%s/%s%s\n",
BOOT_DEV_DIR,
ptn_list[i],
AB_SLOT_A_SUFFIX
);
if (stat(buf, &st)) {
//partition does not have _a version
continue;
}
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1,
"%s/%s%s\n",
BOOT_DEV_DIR,
ptn_list[i],
AB_SLOT_B_SUFFIX
);
if (stat(buf, &st)) {
//partition does not have _a version
continue;
}
memset(partName, '\0', sizeof(partName));
snprintf(partName,
sizeof(partName) - 1,
"%s%s\n",
ptn_list[i],
slot);
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n",
__func__);
goto error;
}
rc = gpt_disk_get_disk_info(partName, disk);
if (rc != 0) {
fprintf(stderr, "%s: Failed to get disk info for %s\n",
__func__,
partName);
goto error;
}
pentry = gpt_disk_get_pentry(disk, partName, PRIMARY_GPT);
pentry_bak = gpt_disk_get_pentry(disk, partName, SECONDARY_GPT);
if (!pentry || !pentry_bak) {
fprintf(stderr, "%s: Failed to get pentry/pentry_bak for %s\n",
__func__,
partName);
goto error;
}
attr = pentry + AB_FLAG_OFFSET;
attr_bak = pentry_bak + AB_FLAG_OFFSET;
if (ab_attr == ATTR_BOOT_SUCCESSFUL) {
*attr = (*attr) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
*attr_bak = (*attr_bak) |
AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
} else if (ab_attr == ATTR_UNBOOTABLE) {
*attr = (*attr) | AB_PARTITION_ATTR_UNBOOTABLE;
*attr_bak = (*attr_bak) | AB_PARTITION_ATTR_UNBOOTABLE;
} else if (ab_attr == ATTR_SLOT_ACTIVE) {
*attr = (*attr) | AB_PARTITION_ATTR_SLOT_ACTIVE;
*attr_bak = (*attr) | AB_PARTITION_ATTR_SLOT_ACTIVE;
} else {
fprintf(stderr, "%s: Unrecognized attr\n", __func__);
goto error;
}
if (gpt_disk_update_crc(disk)) {
fprintf(stderr, "%s: Failed to update crc for %s\n",
__func__,
partName);
goto error;
}
if (gpt_disk_commit(disk)) {
fprintf(stderr, "%s: Failed to write back entry for %s\n",
__func__,
partName);
goto error;
}
gpt_disk_free(disk);
disk = NULL;
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
unsigned get_number_slots(struct boot_control_module *module)
{
struct dirent *de = NULL;
DIR *dir_bootdev = NULL;
unsigned slot_count = 0;
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
dir_bootdev = opendir(BOOTDEV_DIR);
if (!dir_bootdev) {
fprintf(stderr, "%s: Failed to open bootdev dir (%s)\n",
__func__,
strerror(errno));
goto error;
}
while ((de = readdir(dir_bootdev))) {
if (de->d_name[0] == '.')
continue;
static_assert(AB_SLOT_A_SUFFIX[0] == '_', "Breaking change to slot A suffix");
static_assert(AB_SLOT_B_SUFFIX[0] == '_', "Breaking change to slot B suffix");
if (!strncmp(de->d_name, BOOT_IMG_PTN_NAME,
strlen(BOOT_IMG_PTN_NAME)) && !!strncmp(de->d_name, "boot_aging\n", strlen("boot_aging"))) {
slot_count++;
}
}
closedir(dir_bootdev);
return slot_count;
error:
if (dir_bootdev)
closedir(dir_bootdev);
return 0;
}
static unsigned int get_current_slot(struct boot_control_module *module)
{
uint32_t num_slots = 0;
char bootSlotProp[MAX_CMDLINE_SIZE] = {'\0'};
unsigned i = 0;
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
num_slots = get_number_slots(module);
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
get_kernel_cmdline_arg(BOOT_SLOT_PROP, bootSlotProp, "_a");
if (!strncmp(bootSlotProp, "N/A\n", strlen("N/A"))) {
fprintf(stderr, "%s: Unable to read boot slot property\n",
__func__);
goto error;
}
//Iterate through a list of partitons named as boot+suffix
//and see which one is currently active.
for (i = 0; slot_suffix_arr[i] != NULL ; i++) {
if (!strncmp(bootSlotProp,
slot_suffix_arr[i],
strlen(slot_suffix_arr[i]))) {
printf("%s current_slot = %d\n", __func__, i);
return i;
}
}
error:
//The HAL spec requires that we return a number between
//0 to num_slots - 1. Since something went wrong here we
//are just going to return the default slot.
return 0;
}
static int boot_control_check_slot_sanity(struct boot_control_module *module,
unsigned slot)
{
printf("%s\n", __func__);
if (!module)
return -1;
uint32_t num_slots = get_number_slots(module);
if ((num_slots < 1) || (slot > num_slots - 1)) {
fprintf(stderr, "Invalid slot number");
return -1;
}
return 0;
}
int mark_boot_successful(struct boot_control_module *module)
{
printf("%s\n", __func__);
unsigned cur_slot = 0;
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
cur_slot = get_current_slot(module);
if (update_slot_attribute(slot_suffix_arr[cur_slot],
ATTR_BOOT_SUCCESSFUL)) {
goto error;
}
return 0;
error:
fprintf(stderr, "%s: Failed to mark boot successful\n", __func__);
return -1;
}
const char *get_suffix(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
if (boot_control_check_slot_sanity(module, slot) != 0)
return NULL;
else
return slot_suffix_arr[slot];
}
//Return a gpt disk structure representing the disk that holds
//partition.
static struct gpt_disk* boot_ctl_get_disk_info(char *partition)
{
printf("%s\n", __func__);
struct gpt_disk *disk = NULL;
if (!partition)
return NULL;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk\n",
__func__);
goto error;
}
if (gpt_disk_get_disk_info(partition, disk)) {
fprintf(stderr, "failed to get disk info for %s\n",
partition);
goto error;
}
return disk;
error:
if (disk)
gpt_disk_free(disk);
return NULL;
}
//The argument here is a vector of partition names(including the slot suffix)
//that lie on a single disk
static int boot_ctl_set_active_slot_for_partitions(vector<string> part_list,
unsigned slot)
{
printf("%s\n", __func__);
char buf[PATH_MAX] = {0};
struct gpt_disk *disk = NULL;
char slotA[MAX_GPT_NAME_SIZE + 1] = {0};
char slotB[MAX_GPT_NAME_SIZE + 1] = {0};
char active_guid[TYPE_GUID_SIZE + 1] = {0};
char inactive_guid[TYPE_GUID_SIZE + 1] = {0};
//Pointer to the partition entry of current 'A' partition
uint8_t *pentryA = NULL;
uint8_t *pentryA_bak = NULL;
//Pointer to partition entry of current 'B' partition
uint8_t *pentryB = NULL;
uint8_t *pentryB_bak = NULL;
struct stat st;
vector<string>::iterator partition_iterator;
for (partition_iterator = part_list.begin();
partition_iterator != part_list.end();
partition_iterator++) {
//Chop off the slot suffix from the partition name to
//make the string easier to work with.
string prefix = *partition_iterator;
if (prefix.size() < (strlen(AB_SLOT_A_SUFFIX) + 1)) {
fprintf(stderr, "Invalid partition name: %s\n", prefix.c_str());
goto error;
}
prefix.resize(prefix.size() - strlen(AB_SLOT_A_SUFFIX));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s\n", BOOT_DEV_DIR,
prefix.c_str(),
AB_SLOT_A_SUFFIX);
if (stat(buf, &st))
continue;
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1, "%s/%s%s\n", BOOT_DEV_DIR,
prefix.c_str(),
AB_SLOT_B_SUFFIX);
if (stat(buf, &st))
continue;
memset(slotA, 0, sizeof(slotA));
memset(slotB, 0, sizeof(slotA));
snprintf(slotA, sizeof(slotA) - 1, "%s%s\n", prefix.c_str(),
AB_SLOT_A_SUFFIX);
snprintf(slotB, sizeof(slotB) - 1,"%s%s\n", prefix.c_str(),
AB_SLOT_B_SUFFIX);
//Get the disk containing the partitions that were passed in.
//All partitions passed in must lie on the same disk.
if (!disk) {
disk = boot_ctl_get_disk_info(slotA);
if (!disk)
goto error;
}
//Get partition entry for slot A & B from the primary
//and backup tables.
pentryA = gpt_disk_get_pentry(disk, slotA, PRIMARY_GPT);
pentryA_bak = gpt_disk_get_pentry(disk, slotA, SECONDARY_GPT);
pentryB = gpt_disk_get_pentry(disk, slotB, PRIMARY_GPT);
pentryB_bak = gpt_disk_get_pentry(disk, slotB, SECONDARY_GPT);
if ( !pentryA || !pentryA_bak || !pentryB || !pentryB_bak) {
//None of these should be NULL since we have already
//checked for A & B versions earlier.
fprintf(stderr, "Slot pentries for %s not found.\n",
prefix.c_str());
goto error;
}
memset(active_guid, '\0', sizeof(active_guid));
memset(inactive_guid, '\0', sizeof(inactive_guid));
if (get_partition_attribute(slotA, ATTR_SLOT_ACTIVE) == 1) {
//A is the current active slot
memcpy((void*)active_guid, (const void*)pentryA,
TYPE_GUID_SIZE);
memcpy((void*)inactive_guid,(const void*)pentryB,
TYPE_GUID_SIZE);
} else if (get_partition_attribute(slotB,
ATTR_SLOT_ACTIVE) == 1) {
//B is the current active slot
memcpy((void*)active_guid, (const void*)pentryB,
TYPE_GUID_SIZE);
memcpy((void*)inactive_guid, (const void*)pentryA,
TYPE_GUID_SIZE);
} else {
fprintf(stderr, "Both A & B are inactive..Aborting");
goto error;
}
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))){
//Mark A as active in primary table
UPDATE_SLOT(pentryA, active_guid, SLOT_ACTIVE);
//Mark A as active in backup table
UPDATE_SLOT(pentryA_bak, active_guid, SLOT_ACTIVE);
//Mark B as inactive in primary table
UPDATE_SLOT(pentryB, inactive_guid, SLOT_INACTIVE);
//Mark B as inactive in backup table
UPDATE_SLOT(pentryB_bak, inactive_guid, SLOT_INACTIVE);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))){
//Mark B as active in primary table
UPDATE_SLOT(pentryB, active_guid, SLOT_ACTIVE);
//Mark B as active in backup table
UPDATE_SLOT(pentryB_bak, active_guid, SLOT_ACTIVE);
//Mark A as inavtive in primary table
UPDATE_SLOT(pentryA, inactive_guid, SLOT_INACTIVE);
//Mark A as inactive in backup table
UPDATE_SLOT(pentryA_bak, inactive_guid, SLOT_INACTIVE);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (disk) {
if (gpt_disk_update_crc(disk) != 0) {
fprintf(stderr, "%s: Failed to update gpt_disk crc\n",
__func__);
goto error;
}
}
}
//write updated content to disk
if (disk) {
if (gpt_disk_commit(disk)) {
fprintf(stderr, "Failed to commit disk entry");
goto error;
}
gpt_disk_free(disk);
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
unsigned get_active_boot_slot(struct boot_control_module *module)
{
printf("%s\n", __func__);
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
// The HAL spec requires that we return a number between
// 0 to num_slots - 1. Since something went wrong here we
// are just going to return the default slot.
return 0;
}
uint32_t num_slots = get_number_slots(module);
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
for (uint32_t i = 0; i < num_slots; i++) {
char bootPartition[MAX_GPT_NAME_SIZE + 1] = {0};
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[i]);
if (get_partition_attribute(bootPartition, ATTR_SLOT_ACTIVE) == 1) {
return i;
}
}
fprintf(stderr, "%s: Failed to find the active boot slot\n", __func__);
return 0;
}
int set_active_boot_slot(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
map<string, vector<string>> ptn_map;
vector<string> ptn_vec;
const char ptn_list[][MAX_GPT_NAME_SIZE] = { AB_PTN_LIST };
uint32_t i;
int rc = -1;
int is_ufs = gpt_utils_is_ufs_device();
map<string, vector<string>>::iterator map_iter;
if (boot_control_check_slot_sanity(module, slot)) {
fprintf(stderr, "%s: Bad arguments\n", __func__);
goto error;
}
//The partition list just contains prefixes(without the _a/_b) of the
//partitions that support A/B. In order to get the layout we need the
//actual names. To do this we append the slot suffix to every member
//in the list.
for (i = 0; i < ARRAY_SIZE(ptn_list); i++) {
//XBL is handled differrently for ufs devices so ignore it
if (is_ufs && !strncmp(ptn_list[i], PTN_XBL, strlen(PTN_XBL)))
continue;
//The partition list will be the list of _a partitions
string cur_ptn = ptn_list[i];
cur_ptn.append(AB_SLOT_A_SUFFIX);
ptn_vec.push_back(cur_ptn);
}
//The partition map gives us info in the following format:
// [path_to_block_device_1]--><partitions on device 1>
// [path_to_block_device_2]--><partitions on device 2>
// ...
// ...
// eg:
// [/dev/block/sdb]---><system, boot, rpm, tz,....>
if (gpt_utils_get_partition_map(ptn_vec, ptn_map)) {
fprintf(stderr, "%s: Failed to get partition map\n",
__func__);
goto error;
}
for (map_iter = ptn_map.begin(); map_iter != ptn_map.end(); map_iter++){
if (map_iter->second.size() < 1)
continue;
if (boot_ctl_set_active_slot_for_partitions(map_iter->second, slot)) {
fprintf(stderr, "%s: Failed to set active slot for partitions \n", __func__);;
goto error;
}
}
if (is_ufs) {
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))){
//Set xbl_a as the boot lun
rc = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))){
//Set xbl_b as the boot lun
rc = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (rc) {
fprintf(stderr, "%s: Failed to switch xbl boot partition\n",
__func__);
goto error;
}
}
return 0;
error:
return -1;
}
int set_slot_as_unbootable(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
if (boot_control_check_slot_sanity(module, slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
if (update_slot_attribute(slot_suffix_arr[slot],
ATTR_UNBOOTABLE)) {
goto error;
}
return 0;
error:
fprintf(stderr, "%s: Failed to mark slot unbootable\n", __func__);
return -1;
}
int is_slot_bootable(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
int attr = 0;
char bootPartition[MAX_GPT_NAME_SIZE + 1] = {0};
if (boot_control_check_slot_sanity(module, slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
snprintf(bootPartition,
sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[slot]);
attr = get_partition_attribute(bootPartition, ATTR_UNBOOTABLE);
if (attr >= 0)
return !attr;
error:
return -1;
}
int is_slot_marked_successful(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
int attr = 0;
char bootPartition[MAX_GPT_NAME_SIZE + 1] = {0};
if (boot_control_check_slot_sanity(module, slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
snprintf(bootPartition,
sizeof(bootPartition) - 1,
"boot%s", slot_suffix_arr[slot]);
attr = get_partition_attribute(bootPartition, ATTR_BOOT_SUCCESSFUL);
if (attr >= 0)
return attr;
error:
return -1;
}
const struct boot_control_module HAL_MODULE_INFO_SYM = {
.init = boot_control_init,
.getNumberSlots = get_number_slots,
.getCurrentSlot = get_current_slot,
.markBootSuccessful = mark_boot_successful,
.setActiveBootSlot = set_active_boot_slot,
.setSlotAsUnbootable = set_slot_as_unbootable,
.isSlotBootable = is_slot_bootable,
.getSuffix = get_suffix,
.isSlotMarkedSuccessful = is_slot_marked_successful,
.getActiveBootSlot = get_active_boot_slot,
};