A port of the Qualcomm Android bootctrl HAL for musl/glibc userspace.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qbootctl/gpt-utils.cpp

799 lines
24 KiB

/*
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
* Copyright (C) 2021-2022 Caleb Connolly <caleb@connolly.tech>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define _LARGEFILE64_SOURCE /* enable lseek64() */
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/fs.h>
#include <limits.h>
#include <dirent.h>
#include <inttypes.h>
#include <linux/kernel.h>
#include <asm/byteorder.h>
#include <map>
#include <vector>
#include <string>
#include <endian.h>
#include <zlib.h>
#include "utils.h"
#include "gpt-utils.h"
/* list the names of the backed-up partitions to be swapped */
/* extension used for the backup partitions - tzbak, abootbak, etc. */
#define BAK_PTN_NAME_EXT "bak"
#define XBL_PRIMARY "/dev/disk/by-partlabel/xbl_a" // FIXME
#define XBL_BACKUP "/dev/disk/by-partlabel/xblbak"
#define XBL_AB_PRIMARY "/dev/disk/by-partlabel/xbl_a"
#define XBL_AB_SECONDARY "/dev/disk/by-partlabel/xbl_b"
/* GPT defines */
#define MAX_LUNS 26
//Size of the buffer that needs to be passed to the UFS ioctl
#define UFS_ATTR_DATA_SIZE 32
//This will allow us to get the root lun path from the path to the partition.
//i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that
//the boot critical luns lie between sda to sdz which is acceptable because
//only user added external disks,etc would lie beyond that limit which do not
//contain partitions that interest us here.
#define PATH_TRUNCATE_LOC (sizeof("/dev/sda") - 1)
//From /dev/disk/sda get just sda
#define LUN_NAME_START_LOC (sizeof("/dev/") - 1)
#define BOOT_LUN_A_ID 1
#define BOOT_LUN_B_ID 2
/******************************************************************************
* MACROS
******************************************************************************/
#define GET_4_BYTES(ptr) \
((uint32_t) * ((uint8_t *)(ptr)) | \
((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | \
((uint32_t) * ((uint8_t *)(ptr) + 3) << 24))
#define GET_8_BYTES(ptr) \
((uint64_t) * ((uint8_t *)(ptr)) | \
((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) | \
((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) | \
((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) | \
((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) | \
((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | \
((uint64_t) * ((uint8_t *)(ptr) + 7) << 56))
#define PUT_4_BYTES(ptr, y) \
*((uint8_t *)(ptr)) = (y)&0xff; \
*((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
*((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
*((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;
/******************************************************************************
* TYPES
******************************************************************************/
using namespace std;
enum gpt_state { GPT_OK = 0, GPT_BAD_SIGNATURE, GPT_BAD_CRC };
//List of LUN's containing boot critical images.
//Required in the case of UFS devices
struct update_data {
char lun_list[MAX_LUNS][PATH_MAX];
uint32_t num_valid_entries;
};
/******************************************************************************
* FUNCTIONS
******************************************************************************/
void DumpHex(const void *data, size_t size)
{
char ascii[17];
size_t i, j;
ascii[16] = '\0';
for (i = 0; i < size; ++i) {
printf("%02X ", ((unsigned char *)data)[i]);
if (((unsigned char *)data)[i] >= ' ' &&
((unsigned char *)data)[i] <= '~') {
ascii[i % 16] = ((unsigned char *)data)[i];
} else {
ascii[i % 16] = '.';
}
if ((i + 1) % 8 == 0 || i + 1 == size) {
printf(" ");
if ((i + 1) % 16 == 0) {
printf("| %s \n", ascii);
} else if (i + 1 == size) {
ascii[(i + 1) % 16] = '\0';
if ((i + 1) % 16 <= 8) {
printf(" ");
}
for (j = (i + 1) % 16; j < 16; ++j) {
printf(" ");
}
printf("| %s \n", ascii);
}
}
}
}
/**
* ==========================================================================
*
* \brief Read/Write len bytes from/to block dev
*
* \param [in] fd block dev file descriptor (returned from open)
* \param [in] rw RW flag: 0 - read, != 0; - write
* \param [in] offset block dev offset [bytes] - RW start position
* \param [in] buf Pointer to the buffer containing the data
* \param [in] len RW size in bytes. Buf must be at least that big
*
* \return 0 on success
*
* ==========================================================================
*/
static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
{
int r;
if (lseek64(fd, offset, SEEK_SET) < 0) {
fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n",
offset, strerror(errno));
return -1;
}
if (rw)
r = write(fd, buf, len);
else
r = read(fd, buf, len);
if (r < 0) {
fprintf(stderr, "block dev %s failed: %s\n",
rw ? "write" : "read\n", strerror(errno));
} else {
if (rw) {
r = fsync(fd);
if (r < 0)
fprintf(stderr, "fsync failed: %s\n",
strerror(errno));
} else {
r = 0;
}
}
return r;
}
/**
* ==========================================================================
*
* \brief Search within GPT for partition entry with the given name
* or it's backup twin (name-bak).
*
* \param [in] ptn_name Partition name to seek
* \param [in] pentries_start Partition entries array start pointer
* \param [in] pentries_end Partition entries array end pointer
* \param [in] pentry_size Single partition entry size [bytes]
*
* \return First partition entry pointer that matches the name or NULL
*
* ==========================================================================
*/
static uint8_t *gpt_pentry_seek(const char *ptn_name,
const uint8_t *pentries_start,
const uint8_t *pentries_end,
uint32_t pentry_size)
{
char *pentry_name;
unsigned len = strlen(ptn_name);
for (pentry_name = (char *)(pentries_start + PARTITION_NAME_OFFSET);
pentry_name < (char *)pentries_end; pentry_name += pentry_size) {
char name8[MAX_GPT_NAME_SIZE / 2];
unsigned i;
/* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
for (i = 0; i < sizeof(name8); i++)
name8[i] = pentry_name[i * 2];
if (!strncmp(ptn_name, name8, len))
if (name8[len] == 0 ||
!strcmp(&name8[len], BAK_PTN_NAME_EXT))
return (uint8_t *)(pentry_name -
PARTITION_NAME_OFFSET);
}
return NULL;
}
// Defined in ufs-bsg.cpp
int32_t set_boot_lun(uint8_t lun_id);
//Swtich betwieen using either the primary or the backup
//boot LUN for boot. This is required since UFS boot partitions
//cannot have a backup GPT which is what we use for failsafe
//updates of the other 'critical' partitions. This function will
//not be invoked for emmc targets and on UFS targets is only required
//to be invoked for XBL.
//
//The algorithm to do this is as follows:
//- Find the real block device(eg: /dev/disk/sdb) that corresponds
// to the /dev/disk/bootdevice/by-name/xbl(bak) symlink
//
//- Once we have the block device 'node' name(sdb in the above example)
// use this node to to locate the scsi generic device that represents
// it by checking the file /sys/block/sdb/device/scsi_generic/sgY
//
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
//the boot lun to either LUNA or LUNB
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
{
struct stat st;
uint8_t boot_lun_id = 0;
const char *boot_dev = NULL;
(void)st;
(void)boot_dev;
if (chain == BACKUP_BOOT) {
boot_lun_id = BOOT_LUN_B_ID;
if (!stat(XBL_BACKUP, &st))
boot_dev = XBL_BACKUP;
else if (!stat(XBL_AB_SECONDARY, &st))
boot_dev = XBL_AB_SECONDARY;
else {
fprintf(stderr, "%s: Failed to locate secondary xbl\n",
__func__);
goto error;
}
} else if (chain == NORMAL_BOOT) {
boot_lun_id = BOOT_LUN_A_ID;
if (!stat(XBL_PRIMARY, &st))
boot_dev = XBL_PRIMARY;
else if (!stat(XBL_AB_PRIMARY, &st))
boot_dev = XBL_AB_PRIMARY;
else {
fprintf(stderr, "%s: Failed to locate primary xbl\n",
__func__);
goto error;
}
} else {
fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
goto error;
}
//We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
//the same time. If not the current configuration is invalid.
if ((stat(XBL_PRIMARY, &st) || stat(XBL_BACKUP, &st)) &&
(stat(XBL_AB_PRIMARY, &st) || stat(XBL_AB_SECONDARY, &st))) {
fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n",
__func__, strerror(errno));
goto error;
}
LOGD("%s: setting %s lun as boot lun\n", __func__, boot_dev);
if (set_boot_lun(boot_lun_id)) {
goto error;
}
return 0;
error:
return -1;
}
//Given a parttion name(eg: rpm) get the path to the block device that
//represents the GPT disk the partition resides on. In the case of emmc it
//would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
//through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve
//the path to the LUN from there.
static int get_dev_path_from_partition_name(const char *partname, char *buf,
size_t buflen)
{
struct stat st;
char path[PATH_MAX] = { 0 };
int i;
(void)st;
if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
return -1;
}
//Need to find the lun that holds partition partname
snprintf(path, sizeof(path), "%s/%s", BOOT_DEV_DIR, partname);
// if (rc = stat(path, &st)) {
// LOGD("stat failed: errno=%d\n", errno);
// goto error;
// }
buf = realpath(path, buf);
if (!buf) {
return -1;
} else {
for (i = strlen(buf); i > 0; i--)
if (!isdigit(buf[i - 1]))
break;
if (i >= 2 && buf[i - 1] == 'p' && isdigit(buf[i - 2]))
i--;
buf[i] = 0;
}
return 0;
}
int gpt_utils_get_partition_map(vector<string> &ptn_list,
map<string, vector<string> > &partition_map)
{
char devpath[PATH_MAX] = { '\0' };
map<string, vector<string> >::iterator it;
if (ptn_list.size() < 1) {
fprintf(stderr, "%s: Invalid ptn list\n", __func__);
return -1;
}
//Go through the passed in list
for (uint32_t i = 0; i < ptn_list.size(); i++) {
//Key in the map is the path to the device that holds the
//partition
if (get_dev_path_from_partition_name(
ptn_list[i].c_str(), devpath, sizeof(devpath))) {
//Not necessarily an error. The partition may just
//not be present.
continue;
}
string path = devpath;
it = partition_map.find(path);
if (it != partition_map.end()) {
it->second.push_back(ptn_list[i]);
} else {
vector<string> str_vec;
str_vec.push_back(ptn_list[i]);
partition_map.insert(
pair<string, vector<string> >(path, str_vec));
}
memset(devpath, '\0', sizeof(devpath));
}
return 0;
}
//Get the block size of the disk represented by decsriptor fd
static uint32_t gpt_get_block_size(int fd)
{
uint32_t block_size = 0;
if (fd < 0) {
fprintf(stderr, "%s: invalid descriptor\n", __func__);
goto error;
}
if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n",
__func__, strerror(errno));
goto error;
}
return block_size;
error:
return 0;
}
//Write the GPT header present in the passed in buffer back to the
//disk represented by fd
static int gpt_set_header(uint8_t *gpt_header, int fd,
enum gpt_instance instance)
{
uint32_t block_size = 0;
off_t gpt_header_offset = 0;
if (!gpt_header || fd < 0) {
fprintf(stderr, "%s: Invalid arguments\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
LOGD("%s: Block size is : %d\n", __func__, block_size);
if (block_size == 0) {
fprintf(stderr, "%s: Failed to get block size\n", __func__);
goto error;
}
if (instance == PRIMARY_GPT)
gpt_header_offset = block_size;
else
gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
if (gpt_header_offset <= 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n",
__func__);
goto error;
}
LOGD("%s: Writing back header to offset %ld\n", __func__,
gpt_header_offset);
if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
fprintf(stderr, "%s: Failed to write back GPT header\n",
__func__);
goto error;
}
return 0;
error:
return -1;
}
//Read out the GPT header for the disk that contains the partition partname
static uint8_t *gpt_get_header(const char *partname, enum gpt_instance instance)
{
uint8_t *hdr = NULL;
char devpath[PATH_MAX] = { 0 };
uint64_t hdr_offset = 0;
uint32_t block_size = 0;
int fd = -1;
if (!partname) {
fprintf(stderr, "%s: Invalid partition name\n", __func__);
goto error;
}
if (get_dev_path_from_partition_name(partname, devpath,
sizeof(devpath)) != 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__,
partname);
goto error;
}
fd = open(devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s : %s\n", __func__,
devpath, strerror(errno));
goto error;
}
block_size = gpt_get_block_size(fd);
if (block_size == 0) {
fprintf(stderr, "%s: Failed to get gpt block size for %s\n",
__func__, partname);
goto error;
}
hdr = (uint8_t *)calloc(block_size, 1);
if (!hdr) {
fprintf(stderr,
"%s: Failed to allocate memory for gpt header\n",
__func__);
}
if (instance == PRIMARY_GPT)
hdr_offset = block_size;
else {
hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
}
if (hdr_offset < 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n",
__func__);
goto error;
}
if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
fprintf(stderr, "%s: Failed to read GPT header from device\n",
__func__);
goto error;
}
//DumpHex(hdr, block_size);
close(fd);
return hdr;
error:
if (fd >= 0)
close(fd);
if (hdr)
free(hdr);
return NULL;
}
//Returns the partition entry array based on the
//passed in buffer which contains the gpt header.
//The fd here is the descriptor for the 'disk' which
//holds the partition
static uint8_t *gpt_get_pentry_arr(uint8_t *hdr, int fd)
{
uint64_t pentries_start = 0;
uint32_t pentry_size = 0;
uint32_t block_size = 0;
uint32_t pentries_arr_size = 0;
uint8_t *pentry_arr = NULL;
int rc = 0;
if (!hdr) {
fprintf(stderr, "%s: Invalid header\n", __func__);
goto error;
}
if (fd < 0) {
fprintf(stderr, "%s: Invalid fd\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
if (!block_size) {
fprintf(stderr, "%s: Failed to get gpt block size for\n",
__func__);
goto error;
}
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
pentries_arr_size =
GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
pentry_arr = (uint8_t *)calloc(1, pentries_arr_size);
if (!pentry_arr) {
fprintf(stderr,
"%s: Failed to allocate memory for partition array\n",
__func__);
goto error;
}
rc = blk_rw(fd, 0, pentries_start, pentry_arr, pentries_arr_size);
if (rc) {
fprintf(stderr, "%s: Failed to read partition entry array\n",
__func__);
goto error;
}
return pentry_arr;
error:
if (pentry_arr)
free(pentry_arr);
return NULL;
}
static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr)
{
uint32_t block_size = 0;
uint64_t pentries_start = 0;
uint32_t pentry_size = 0;
uint32_t pentries_arr_size = 0;
int rc = 0;
if (!hdr || fd < 0 || !arr) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
if (!block_size) {
fprintf(stderr, "%s: Failed to get gpt block size for\n",
__func__);
goto error;
}
LOGD("%s : Block size is %d\n", __func__, block_size);
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
pentries_arr_size =
GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64
"\n",
__func__, pentries_arr_size, pentries_start);
LOGD("pentries_start: %lu\n", pentries_start);
rc = blk_rw(fd, 1, pentries_start, arr, pentries_arr_size);
if (rc) {
fprintf(stderr, "%s: Failed to read partition entry array\n",
__func__);
goto error;
}
return 0;
error:
return -1;
}
//Allocate a handle used by calls to the "gpt_disk" api's
struct gpt_disk *gpt_disk_alloc()
{
struct gpt_disk *disk;
disk = (struct gpt_disk *)malloc(sizeof(struct gpt_disk));
if (!disk) {
fprintf(stderr, "%s: Failed to allocate memory\n", __func__);
goto end;
}
memset(disk, 0, sizeof(struct gpt_disk));
end:
return disk;
}
//Free previously allocated/initialized handle
void gpt_disk_free(struct gpt_disk *disk)
{
if (!disk)
return;
if (disk->hdr)
free(disk->hdr);
if (disk->hdr_bak)
free(disk->hdr_bak);
if (disk->pentry_arr)
free(disk->pentry_arr);
if (disk->pentry_arr_bak)
free(disk->pentry_arr_bak);
free(disk);
return;
}
//fills up the passed in gpt_disk struct with information about the
//disk represented by path dev. Returns 0 on success and -1 on error.
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *dsk)
{
struct gpt_disk *disk = NULL;
int fd = -1;
uint32_t gpt_header_size = 0;
if (!dsk || !dev) {
fprintf(stderr, "%s: Invalid arguments\n", __func__);
goto error;
}
disk = dsk;
disk->hdr = gpt_get_header(dev, PRIMARY_GPT);
if (!disk->hdr) {
fprintf(stderr, "%s: Failed to get primary header\n", __func__);
goto error;
}
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
// FIXME: pointer offsets crc bleh
disk->hdr_crc = crc32(0, disk->hdr, gpt_header_size);
disk->hdr_bak = gpt_get_header(dev, PRIMARY_GPT);
if (!disk->hdr_bak) {
fprintf(stderr, "%s: Failed to get backup header\n", __func__);
goto error;
}
disk->hdr_bak_crc = crc32(0, disk->hdr_bak, gpt_header_size);
//Descriptor for the block device. We will use this for further
//modifications to the partition table
if (get_dev_path_from_partition_name(dev, disk->devpath,
sizeof(disk->devpath)) != 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__,
dev);
goto error;
}
fd = open(disk->devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__,
disk->devpath, strerror(errno));
goto error;
}
disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
if (!disk->pentry_arr) {
fprintf(stderr, "%s: Failed to obtain partition entry array\n",
__func__);
goto error;
}
disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
if (!disk->pentry_arr_bak) {
fprintf(stderr,
"%s: Failed to obtain backup partition entry array\n",
__func__);
goto error;
}
disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
disk->pentry_arr_size =
GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) *
disk->pentry_size;
disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
disk->pentry_arr_bak_crc =
GET_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET);
disk->block_size = gpt_get_block_size(fd);
close(fd);
disk->is_initialized = GPT_DISK_INIT_MAGIC;
return 0;
error:
if (fd >= 0)
close(fd);
return -1;
}
//Get pointer to partition entry from a allocated gpt_disk structure
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname,
enum gpt_instance instance)
{
uint8_t *ptn_arr = NULL;
if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr :
disk->pentry_arr_bak;
return (gpt_pentry_seek(partname, ptn_arr,
ptn_arr + disk->pentry_arr_size,
disk->pentry_size));
error:
return NULL;
}
//Update CRC values for the various components of the gpt_disk
//structure. This function should be called after any of the fields
//have been updated before the structure contents are written back to
//disk.
int gpt_disk_update_crc(struct gpt_disk *disk)
{
uint32_t gpt_header_size = 0;
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
fprintf(stderr, "%s: invalid argument\n", __func__);
goto error;
}
//Recalculate the CRC of the primary partiton array
disk->pentry_arr_crc =
crc32(0, disk->pentry_arr, disk->pentry_arr_size);
//Recalculate the CRC of the backup partition array
disk->pentry_arr_bak_crc =
crc32(0, disk->pentry_arr_bak, disk->pentry_arr_size);
//Update the partition CRC value in the primary GPT header
PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
//Update the partition CRC value in the backup GPT header
PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET,
disk->pentry_arr_bak_crc);
//Update the CRC value of the primary header
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
//Header CRC is calculated with its own CRC field set to 0
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
disk->hdr_crc = crc32(0, disk->hdr, gpt_header_size);
disk->hdr_bak_crc = crc32(0, disk->hdr_bak, gpt_header_size);
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
return 0;
error:
return -1;
}
//Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk)
{
int fd = -1;
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
fprintf(stderr, "%s: Invalid args\n", __func__);
goto error;
}
fd = open(disk->devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__,
disk->devpath, strerror(errno));
goto error;
}
LOGD("%s: Writing back primary GPT header\n", __func__);
//Write the primary header
if (gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
fprintf(stderr, "%s: Failed to update primary GPT header\n",
__func__);
goto error;
}
LOGD("%s: Writing back primary partition array\n", __func__);
//Write back the primary partition array
if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
fprintf(stderr,
"%s: Failed to write primary GPT partition arr\n",
__func__);
goto error;
}
fsync(fd);
close(fd);
return 0;
error:
if (fd >= 0)
close(fd);
return -1;
}
//Determine whether to handle the given partition as eMMC or UFS, using the
//name of the backing device.
//
//Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function
//will tend to prefer UFS behavior. If it incorrectly reports this, then the
//program should exit (e.g. by failing) before making any changes.
bool gpt_utils_is_partition_backed_by_emmc(const char *part) {
char devpath[PATH_MAX] = { '\0' };
if (get_dev_path_from_partition_name(part, devpath, sizeof(devpath)))
return false;
return !strcmp(devpath, EMMC_DEVICE);
}