/* * Copyright (c) 2013, The Linux Foundation. All rights reserved. * Copyright (C) 2021-2022 Caleb Connolly * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _LARGEFILE64_SOURCE /* enable lseek64() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "gpt-utils.h" /* list the names of the backed-up partitions to be swapped */ /* extension used for the backup partitions - tzbak, abootbak, etc. */ #define BAK_PTN_NAME_EXT "bak" #define XBL_PRIMARY "/dev/disk/by-partlabel/xbl_a" // FIXME #define XBL_BACKUP "/dev/disk/by-partlabel/xblbak" #define XBL_AB_PRIMARY "/dev/disk/by-partlabel/xbl_a" #define XBL_AB_SECONDARY "/dev/disk/by-partlabel/xbl_b" /* GPT defines */ #define MAX_LUNS 26 //Size of the buffer that needs to be passed to the UFS ioctl #define UFS_ATTR_DATA_SIZE 32 //This will allow us to get the root lun path from the path to the partition. //i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that //the boot critical luns lie between sda to sdz which is acceptable because //only user added external disks,etc would lie beyond that limit which do not //contain partitions that interest us here. #define PATH_TRUNCATE_LOC (sizeof("/dev/sda") - 1) //From /dev/disk/sda get just sda #define LUN_NAME_START_LOC (sizeof("/dev/") - 1) #define BOOT_LUN_A_ID 1 #define BOOT_LUN_B_ID 2 /****************************************************************************** * MACROS ******************************************************************************/ #define GET_4_BYTES(ptr) \ ((uint32_t) * ((uint8_t *)(ptr)) | \ ((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) | \ ((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | \ ((uint32_t) * ((uint8_t *)(ptr) + 3) << 24)) #define GET_8_BYTES(ptr) \ ((uint64_t) * ((uint8_t *)(ptr)) | \ ((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) | \ ((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) | \ ((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) | \ ((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) | \ ((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) | \ ((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | \ ((uint64_t) * ((uint8_t *)(ptr) + 7) << 56)) #define PUT_4_BYTES(ptr, y) \ *((uint8_t *)(ptr)) = (y)&0xff; \ *((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \ *((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \ *((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff; /****************************************************************************** * TYPES ******************************************************************************/ using namespace std; enum gpt_state { GPT_OK = 0, GPT_BAD_SIGNATURE, GPT_BAD_CRC }; //List of LUN's containing boot critical images. //Required in the case of UFS devices struct update_data { char lun_list[MAX_LUNS][PATH_MAX]; uint32_t num_valid_entries; }; /****************************************************************************** * FUNCTIONS ******************************************************************************/ void DumpHex(const void *data, size_t size) { char ascii[17]; size_t i, j; ascii[16] = '\0'; for (i = 0; i < size; ++i) { printf("%02X ", ((unsigned char *)data)[i]); if (((unsigned char *)data)[i] >= ' ' && ((unsigned char *)data)[i] <= '~') { ascii[i % 16] = ((unsigned char *)data)[i]; } else { ascii[i % 16] = '.'; } if ((i + 1) % 8 == 0 || i + 1 == size) { printf(" "); if ((i + 1) % 16 == 0) { printf("| %s \n", ascii); } else if (i + 1 == size) { ascii[(i + 1) % 16] = '\0'; if ((i + 1) % 16 <= 8) { printf(" "); } for (j = (i + 1) % 16; j < 16; ++j) { printf(" "); } printf("| %s \n", ascii); } } } } /** * ========================================================================== * * \brief Read/Write len bytes from/to block dev * * \param [in] fd block dev file descriptor (returned from open) * \param [in] rw RW flag: 0 - read, != 0; - write * \param [in] offset block dev offset [bytes] - RW start position * \param [in] buf Pointer to the buffer containing the data * \param [in] len RW size in bytes. Buf must be at least that big * * \return 0 on success * * ========================================================================== */ static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len) { int r; if (lseek64(fd, offset, SEEK_SET) < 0) { fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n", offset, strerror(errno)); return -1; } if (rw) r = write(fd, buf, len); else r = read(fd, buf, len); if (r < 0) { fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read\n", strerror(errno)); } else { if (rw) { r = fsync(fd); if (r < 0) fprintf(stderr, "fsync failed: %s\n", strerror(errno)); } else { r = 0; } } return r; } /** * ========================================================================== * * \brief Search within GPT for partition entry with the given name * or it's backup twin (name-bak). * * \param [in] ptn_name Partition name to seek * \param [in] pentries_start Partition entries array start pointer * \param [in] pentries_end Partition entries array end pointer * \param [in] pentry_size Single partition entry size [bytes] * * \return First partition entry pointer that matches the name or NULL * * ========================================================================== */ static uint8_t *gpt_pentry_seek(const char *ptn_name, const uint8_t *pentries_start, const uint8_t *pentries_end, uint32_t pentry_size) { char *pentry_name; unsigned len = strlen(ptn_name); for (pentry_name = (char *)(pentries_start + PARTITION_NAME_OFFSET); pentry_name < (char *)pentries_end; pentry_name += pentry_size) { char name8[MAX_GPT_NAME_SIZE / 2]; unsigned i; /* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */ for (i = 0; i < sizeof(name8); i++) name8[i] = pentry_name[i * 2]; if (!strncmp(ptn_name, name8, len)) if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT)) return (uint8_t *)(pentry_name - PARTITION_NAME_OFFSET); } return NULL; } // Defined in ufs-bsg.cpp int32_t set_boot_lun(uint8_t lun_id); //Swtich betwieen using either the primary or the backup //boot LUN for boot. This is required since UFS boot partitions //cannot have a backup GPT which is what we use for failsafe //updates of the other 'critical' partitions. This function will //not be invoked for emmc targets and on UFS targets is only required //to be invoked for XBL. // //The algorithm to do this is as follows: //- Find the real block device(eg: /dev/disk/sdb) that corresponds // to the /dev/disk/bootdevice/by-name/xbl(bak) symlink // //- Once we have the block device 'node' name(sdb in the above example) // use this node to to locate the scsi generic device that represents // it by checking the file /sys/block/sdb/device/scsi_generic/sgY // //- Once we locate sgY we call the query ioctl on /dev/sgy to switch //the boot lun to either LUNA or LUNB int gpt_utils_set_xbl_boot_partition(enum boot_chain chain) { struct stat st; uint8_t boot_lun_id = 0; const char *boot_dev = NULL; (void)st; (void)boot_dev; if (chain == BACKUP_BOOT) { boot_lun_id = BOOT_LUN_B_ID; if (!stat(XBL_BACKUP, &st)) boot_dev = XBL_BACKUP; else if (!stat(XBL_AB_SECONDARY, &st)) boot_dev = XBL_AB_SECONDARY; else { fprintf(stderr, "%s: Failed to locate secondary xbl\n", __func__); return -1; } } else if (chain == NORMAL_BOOT) { boot_lun_id = BOOT_LUN_A_ID; if (!stat(XBL_PRIMARY, &st)) boot_dev = XBL_PRIMARY; else if (!stat(XBL_AB_PRIMARY, &st)) boot_dev = XBL_AB_PRIMARY; else { fprintf(stderr, "%s: Failed to locate primary xbl\n", __func__); return -1; } } else { fprintf(stderr, "%s: Invalid boot chain id\n", __func__); return -1; } //We need either both xbl and xblbak or both xbl_a and xbl_b to exist at //the same time. If not the current configuration is invalid. if ((stat(XBL_PRIMARY, &st) || stat(XBL_BACKUP, &st)) && (stat(XBL_AB_PRIMARY, &st) || stat(XBL_AB_SECONDARY, &st))) { fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n", __func__, strerror(errno)); return -1; } LOGD("%s: setting %s lun as boot lun\n", __func__, boot_dev); if (set_boot_lun(boot_lun_id)) return -1; return 0; } //Given a parttion name(eg: rpm) get the path to the block device that //represents the GPT disk the partition resides on. In the case of emmc it //would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look //through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve //the path to the LUN from there. static int get_dev_path_from_partition_name(const char *partname, char *buf, size_t buflen) { struct stat st; char path[PATH_MAX] = { 0 }; int i; (void)st; if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) { fprintf(stderr, "%s: Invalid argument\n", __func__); return -1; } //Need to find the lun that holds partition partname snprintf(path, sizeof(path), "%s/%s", BOOT_DEV_DIR, partname); // if (rc = stat(path, &st)) { // LOGD("stat failed: errno=%d\n", errno); // goto error; // } buf = realpath(path, buf); if (!buf) { return -1; } else { for (i = strlen(buf); i > 0; i--) if (!isdigit(buf[i - 1])) break; if (i >= 2 && buf[i - 1] == 'p' && isdigit(buf[i - 2])) i--; buf[i] = 0; } return 0; } int gpt_utils_get_partition_map(vector &ptn_list, map > &partition_map) { char devpath[PATH_MAX] = { '\0' }; map >::iterator it; if (ptn_list.size() < 1) { fprintf(stderr, "%s: Invalid ptn list\n", __func__); return -1; } //Go through the passed in list for (uint32_t i = 0; i < ptn_list.size(); i++) { //Key in the map is the path to the device that holds the //partition if (get_dev_path_from_partition_name( ptn_list[i].c_str(), devpath, sizeof(devpath))) { //Not necessarily an error. The partition may just //not be present. continue; } string path = devpath; it = partition_map.find(path); if (it != partition_map.end()) { it->second.push_back(ptn_list[i]); } else { vector str_vec; str_vec.push_back(ptn_list[i]); partition_map.insert( pair >(path, str_vec)); } memset(devpath, '\0', sizeof(devpath)); } return 0; } //Get the block size of the disk represented by decsriptor fd static uint32_t gpt_get_block_size(int fd) { uint32_t block_size = 0; if (fd < 0) { fprintf(stderr, "%s: invalid descriptor\n", __func__); return 0; } if (ioctl(fd, BLKSSZGET, &block_size) != 0) { fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n", __func__, strerror(errno)); return 0; } return block_size; } //Write the GPT header present in the passed in buffer back to the //disk represented by fd static int gpt_set_header(uint8_t *gpt_header, int fd, enum gpt_instance instance) { uint32_t block_size = 0; off_t gpt_header_offset = 0; if (!gpt_header || fd < 0) { fprintf(stderr, "%s: Invalid arguments\n", __func__); return -1; } block_size = gpt_get_block_size(fd); LOGD("%s: Block size is : %d\n", __func__, block_size); if (block_size == 0) { fprintf(stderr, "%s: Failed to get block size\n", __func__); return -1; } if (instance == PRIMARY_GPT) gpt_header_offset = block_size; else gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size; if (gpt_header_offset <= 0) { fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__); return -1; } LOGD("%s: Writing back header to offset %ld\n", __func__, gpt_header_offset); if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) { fprintf(stderr, "%s: Failed to write back GPT header\n", __func__); return -1; } return 0; } struct file { int fd = -1; ~file() { if (fd > -1) { fsync(fd); close(fd); } } int open(const char *path) { fd = ::open(path, O_RDWR); return fd; } }; //Read out the GPT header for the disk that contains the partition partname static bool gpt_get_header(const char *partname, enum gpt_instance instance, std::vector *hdr) { char devpath[PATH_MAX] = { 0 }; off_t hdr_offset = 0; uint32_t block_size = 0; file file; if (!partname) { fprintf(stderr, "%s: Invalid partition name\n", __func__); return false; } if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath)) != 0) { fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, partname); return false; } if (file.open(devpath) < 0) { fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, devpath, strerror(errno)); return false; } block_size = gpt_get_block_size(file.fd); if (block_size == 0) { fprintf(stderr, "%s: Failed to get gpt block size for %s\n", __func__, partname); return false; } hdr->resize(block_size); std::fill(hdr->begin(), hdr->end(), 0); if (instance == PRIMARY_GPT) hdr_offset = block_size; else hdr_offset = lseek64(file.fd, 0, SEEK_END) - block_size; if (hdr_offset < 0) { fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__); return false; } if (blk_rw(file.fd, 0, hdr_offset, hdr->data(), block_size)) { fprintf(stderr, "%s: Failed to read GPT header from device\n", __func__); return false; } return true; } //Returns the partition entry array based on the //passed in buffer which contains the gpt header. //The fd here is the descriptor for the 'disk' which //holds the partition static bool gpt_get_pentry_arr(uint8_t *hdr, int fd, std::vector *pentry_arr) { uint64_t pentries_start = 0; uint32_t pentry_size = 0; uint32_t block_size = 0; uint32_t pentries_arr_size = 0; int rc = 0; if (fd < 0) { fprintf(stderr, "%s: Invalid fd\n", __func__); return false; } block_size = gpt_get_block_size(fd); if (!block_size) { fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__); return false; } pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size; pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET); pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size; pentry_arr->resize(pentries_arr_size); std::fill(pentry_arr->begin(), pentry_arr->end(), 0); rc = blk_rw(fd, 0, pentries_start, pentry_arr->data(), pentries_arr_size); if (rc) { fprintf(stderr, "%s: Failed to read partition entry array\n", __func__); return false; } return true; } static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr) { uint32_t block_size = 0; uint64_t pentries_start = 0; uint32_t pentry_size = 0; uint32_t pentries_arr_size = 0; int rc = 0; if (!hdr || fd < 0 || !arr) { fprintf(stderr, "%s: Invalid argument\n", __func__); return -1; } block_size = gpt_get_block_size(fd); if (!block_size) { fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__); return -1; } LOGD("%s : Block size is %d\n", __func__, block_size); pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size; pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET); pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size; LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64 "\n", __func__, pentries_arr_size, pentries_start); LOGD("pentries_start: %lu\n", pentries_start); rc = blk_rw(fd, 1, pentries_start, arr, pentries_arr_size); if (rc) { fprintf(stderr, "%s: Failed to read partition entry array\n", __func__); return -1; } return 0; } //fills up the passed in gpt_disk struct with information about the //disk represented by path dev. Returns 0 on success and -1 on error. int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk) { file file; uint32_t gpt_header_size = 0; if (!disk || !dev) { fprintf(stderr, "%s: Invalid arguments\n", __func__); return -1; } gpt_get_header(dev, PRIMARY_GPT, &disk->hdr); if (disk->hdr.empty()) { fprintf(stderr, "%s: Failed to get primary header\n", __func__); return -1; } gpt_header_size = GET_4_BYTES(disk->hdr.data() + HEADER_SIZE_OFFSET); // FIXME: pointer offsets crc bleh disk->hdr_crc = crc32(0, disk->hdr.data(), gpt_header_size); gpt_get_header(dev, PRIMARY_GPT, &disk->hdr_bak); if (disk->hdr_bak.empty()) { fprintf(stderr, "%s: Failed to get backup header\n", __func__); return -1; } disk->hdr_bak_crc = crc32(0, disk->hdr_bak.data(), gpt_header_size); //Descriptor for the block device. We will use this for further //modifications to the partition table if (get_dev_path_from_partition_name(dev, disk->devpath, sizeof(disk->devpath)) != 0) { fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, dev); return -1; } if (file.open(disk->devpath) < 0) { fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath, strerror(errno)); return -1; } gpt_get_pentry_arr(disk->hdr.data(), file.fd, &disk->pentry_arr); if (disk->pentry_arr.empty()) { fprintf(stderr, "%s: Failed to obtain partition entry array\n", __func__); return -1; } gpt_get_pentry_arr(disk->hdr_bak.data(), file.fd, &disk->pentry_arr_bak); if (disk->pentry_arr_bak.empty()) { fprintf(stderr, "%s: Failed to obtain backup partition entry array\n", __func__); return -1; } disk->pentry_size = GET_4_BYTES(disk->hdr.data() + PENTRY_SIZE_OFFSET); disk->pentry_arr_size = GET_4_BYTES(disk->hdr.data() + PARTITION_COUNT_OFFSET) * disk->pentry_size; disk->pentry_arr_crc = GET_4_BYTES(disk->hdr.data() + PARTITION_CRC_OFFSET); disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak.data() + PARTITION_CRC_OFFSET); disk->block_size = gpt_get_block_size(file.fd); disk->is_initialized = GPT_DISK_INIT_MAGIC; return 0; } //Get pointer to partition entry from a allocated gpt_disk structure uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname, enum gpt_instance instance) { uint8_t *ptn_arr = NULL; if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) { fprintf(stderr, "%s: Invalid argument\n", __func__); return NULL; } ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr.data() : disk->pentry_arr_bak.data(); return (gpt_pentry_seek(partname, ptn_arr, ptn_arr + disk->pentry_arr_size, disk->pentry_size)); } //Update CRC values for the various components of the gpt_disk //structure. This function should be called after any of the fields //have been updated before the structure contents are written back to //disk. int gpt_disk_update_crc(struct gpt_disk *disk) { uint32_t gpt_header_size = 0; if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) { fprintf(stderr, "%s: invalid argument\n", __func__); return -1; } //Recalculate the CRC of the primary partiton array disk->pentry_arr_crc = crc32(0, disk->pentry_arr.data(), disk->pentry_arr_size); //Recalculate the CRC of the backup partition array disk->pentry_arr_bak_crc = crc32(0, disk->pentry_arr_bak.data(), disk->pentry_arr_size); //Update the partition CRC value in the primary GPT header PUT_4_BYTES(disk->hdr.data() + PARTITION_CRC_OFFSET, disk->pentry_arr_crc); //Update the partition CRC value in the backup GPT header PUT_4_BYTES(disk->hdr_bak.data() + PARTITION_CRC_OFFSET, disk->pentry_arr_bak_crc); //Update the CRC value of the primary header gpt_header_size = GET_4_BYTES(disk->hdr.data() + HEADER_SIZE_OFFSET); //Header CRC is calculated with its own CRC field set to 0 PUT_4_BYTES(disk->hdr.data() + HEADER_CRC_OFFSET, 0); PUT_4_BYTES(disk->hdr_bak.data() + HEADER_CRC_OFFSET, 0); disk->hdr_crc = crc32(0, disk->hdr.data(), gpt_header_size); disk->hdr_bak_crc = crc32(0, disk->hdr_bak.data(), gpt_header_size); PUT_4_BYTES(disk->hdr.data() + HEADER_CRC_OFFSET, disk->hdr_crc); PUT_4_BYTES(disk->hdr_bak.data() + HEADER_CRC_OFFSET, disk->hdr_bak_crc); return 0; } //Write the contents of struct gpt_disk back to the actual disk int gpt_disk_commit(struct gpt_disk *disk) { file file; if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) { fprintf(stderr, "%s: Invalid args\n", __func__); return -1; } if (file.open(disk->devpath) < 0) { fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath, strerror(errno)); return -1; } LOGD("%s: Writing back primary GPT header\n", __func__); //Write the primary header if (gpt_set_header(disk->hdr.data(), file.fd, PRIMARY_GPT) != 0) { fprintf(stderr, "%s: Failed to update primary GPT header\n", __func__); return -1; } LOGD("%s: Writing back primary partition array\n", __func__); //Write back the primary partition array if (gpt_set_pentry_arr(disk->hdr.data(), file.fd, disk->pentry_arr.data())) { fprintf(stderr, "%s: Failed to write primary GPT partition arr\n", __func__); return -1; } return 0; } //Determine whether to handle the given partition as eMMC or UFS, using the //name of the backing device. // //Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function //will tend to prefer UFS behavior. If it incorrectly reports this, then the //program should exit (e.g. by failing) before making any changes. bool gpt_utils_is_partition_backed_by_emmc(const char *part) { char devpath[PATH_MAX] = { '\0' }; if (get_dev_path_from_partition_name(part, devpath, sizeof(devpath))) return false; return !strcmp(devpath, EMMC_DEVICE); }