You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
virglrenderer/src/vrend_shader.c

2289 lines
80 KiB

/**************************************************************************
*
* Copyright (C) 2014 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_iterate.h"
#include "util/u_memory.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include "vrend_shader.h"
extern int vrend_dump_shaders;
/*
* TODO list
* loops
* DDX/DDY/TXD
* missing opcodes
*/
/* start convert of tgsi to glsl */
#define INTERP_PREFIX " "
int vrend_shader_use_explicit = 0;
struct vrend_shader_io {
unsigned name;
unsigned gpr;
unsigned done;
int sid;
unsigned interpolate;
boolean centroid;
unsigned first;
boolean glsl_predefined_no_emit;
boolean glsl_no_index;
boolean glsl_gl_in;
boolean override_no_wm;
boolean is_int;
char glsl_name[64];
};
struct vrend_shader_sampler {
int tgsi_sampler_type;
};
#define MAX_IMMEDIATE 1024
struct immed {
int type;
union imm {
uint32_t ui;
int32_t i;
float f;
} val[4];
};
struct dump_ctx {
struct tgsi_iterate_context iter;
struct vrend_shader_cfg *cfg;
int prog_type;
char *glsl_main;
int size;
uint instno;
int num_interps;
int num_inputs;
struct vrend_shader_io inputs[32];
int num_outputs;
struct vrend_shader_io outputs[32];
int num_system_values;
struct vrend_shader_io system_values[32];
int num_temps;
struct vrend_shader_sampler samplers[32];
uint32_t samplers_used;
int num_consts;
int num_imm;
struct immed imm[MAX_IMMEDIATE];
unsigned fragcoord_input;
int num_ubo;
int ubo_idx[32];
int ubo_sizes[32];
int num_address;
struct pipe_stream_output_info *so;
char **so_names;
bool write_so_outputs[PIPE_MAX_SO_OUTPUTS];
bool uses_cube_array;
bool uses_sampler_ms;
bool uses_sampler_buf;
bool uses_sampler_rect;
bool uses_lodq;
bool uses_txq_levels;
bool uses_tg4;
/* create a shader with lower left if upper left is primary variant
or vice versa */
uint32_t shadow_samp_mask;
boolean write_all_cbufs;
int fs_coord_origin, fs_pixel_center;
int gs_in_prim, gs_out_prim, gs_max_out_verts;
struct vrend_shader_key *key;
boolean has_ints;
boolean has_instanceid;
int indent_level;
int num_in_clip_dist;
int num_clip_dist;
int glsl_ver_required;
bool front_face_emitted;
int color_in_mask;
bool has_clipvertex;
bool has_viewport_idx;
};
static inline const char *tgsi_proc_to_prefix(int shader_type)
{
switch (shader_type) {
case TGSI_PROCESSOR_VERTEX: return "vs";
case TGSI_PROCESSOR_FRAGMENT: return "fs";
case TGSI_PROCESSOR_GEOMETRY: return "gs";
};
return NULL;
}
static inline const char *prim_to_name(int prim)
{
switch (prim) {
case PIPE_PRIM_POINTS: return "points";
case PIPE_PRIM_LINES: return "lines";
case PIPE_PRIM_LINE_STRIP: return "line_strip";
case PIPE_PRIM_LINES_ADJACENCY: return "lines_adjacency";
case PIPE_PRIM_TRIANGLES: return "triangles";
case PIPE_PRIM_TRIANGLE_STRIP: return "triangle_strip";
case PIPE_PRIM_TRIANGLES_ADJACENCY: return "triangles_adjacency";
default: return "UNKNOWN";
};
}
static inline int gs_input_prim_to_size(int prim)
{
switch (prim) {
case PIPE_PRIM_POINTS: return 1;
case PIPE_PRIM_LINES: return 2;
case PIPE_PRIM_LINES_ADJACENCY: return 4;
case PIPE_PRIM_TRIANGLES: return 3;
case PIPE_PRIM_TRIANGLES_ADJACENCY: return 6;
default: return -1;
};
}
static inline boolean fs_emit_layout(struct dump_ctx *ctx)
{
if (ctx->fs_pixel_center)
return TRUE;
/* if coord origin is 0 and invert is 0 - emit origin_upper_left,
if coord_origin is 0 and invert is 1 - emit nothing (lower)
if coord origin is 1 and invert is 0 - emit nothing (lower)
if coord_origin is 1 and invert is 1 - emit origin upper left */
if (!(ctx->fs_coord_origin ^ ctx->key->invert_fs_origin))
return TRUE;
return FALSE;
}
static char *strcat_realloc(char *str, const char *catstr)
{
str = realloc(str, strlen(str) + strlen(catstr) + 1);
if (!str)
return NULL;
strcat(str, catstr);
return str;
}
static char *add_str_to_glsl_main(struct dump_ctx *ctx, char *buf)
{
ctx->glsl_main = strcat_realloc(ctx->glsl_main, buf);
return ctx->glsl_main;
}
static boolean
iter_declaration(struct tgsi_iterate_context *iter,
struct tgsi_full_declaration *decl )
{
struct dump_ctx *ctx = (struct dump_ctx *)iter;
int i;
int color_offset = 0;
char *name_prefix = "";
bool add_two_side = false;
if (ctx->prog_type == -1)
ctx->prog_type = iter->processor.Processor;
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX &&
ctx->key->gs_present && ctx->key->clip_plane_enable)
ctx->glsl_ver_required = 150;
switch (decl->Declaration.File) {
case TGSI_FILE_INPUT:
i = ctx->num_inputs++;
ctx->inputs[i].name = decl->Semantic.Name;
ctx->inputs[i].sid = decl->Semantic.Index;
ctx->inputs[i].interpolate = decl->Interp.Interpolate;
ctx->inputs[i].first = decl->Range.First;
ctx->inputs[i].glsl_predefined_no_emit = FALSE;
ctx->inputs[i].glsl_no_index = FALSE;
ctx->inputs[i].override_no_wm = FALSE;
ctx->inputs[i].glsl_gl_in = FALSE;
switch (ctx->inputs[i].name) {
case TGSI_SEMANTIC_COLOR:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->glsl_ver_required < 140) {
if (decl->Semantic.Index == 0)
name_prefix = "gl_Color";
else if (decl->Semantic.Index == 1)
name_prefix = "gl_SecondaryColor";
else
fprintf(stderr, "got illegal color semantic index %d\n", decl->Semantic.Index);
ctx->inputs[i].glsl_no_index = TRUE;
} else {
if (ctx->key->color_two_side) {
int j = ctx->num_inputs++;
ctx->inputs[j].name = TGSI_SEMANTIC_BCOLOR;
ctx->inputs[j].sid = decl->Semantic.Index;
ctx->inputs[j].interpolate = decl->Interp.Interpolate;
ctx->inputs[j].first = decl->Range.First;
ctx->inputs[j].glsl_predefined_no_emit = FALSE;
ctx->inputs[j].glsl_no_index = FALSE;
ctx->inputs[j].override_no_wm = FALSE;
ctx->color_in_mask |= (1 << decl->Semantic.Index);
if (ctx->front_face_emitted == false) {
int k = ctx->num_inputs++;
ctx->inputs[k].name = TGSI_SEMANTIC_FACE;
ctx->inputs[k].sid = 0;
ctx->inputs[k].interpolate = 0;
ctx->inputs[k].centroid = 0;
ctx->inputs[k].first = 0;
ctx->inputs[k].override_no_wm = FALSE;
ctx->inputs[k].glsl_predefined_no_emit = TRUE;
ctx->inputs[k].glsl_no_index = TRUE;
}
add_two_side = true;
}
}
name_prefix = "ex";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_PRIMID:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
name_prefix = "gl_PrimitiveIDIn";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
ctx->inputs[i].override_no_wm = TRUE;
ctx->has_ints = TRUE;
break;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_PrimitiveID";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
ctx->glsl_ver_required = 150;
break;
}
case TGSI_SEMANTIC_PSIZE:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
name_prefix = "gl_PointSize";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
ctx->inputs[i].override_no_wm = TRUE;
ctx->inputs[i].glsl_gl_in = TRUE;
break;
}
case TGSI_SEMANTIC_CLIPDIST:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
name_prefix = "gl_ClipDistance";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
ctx->inputs[i].glsl_gl_in = TRUE;
ctx->num_in_clip_dist += 4;
break;
}
case TGSI_SEMANTIC_POSITION:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
name_prefix = "gl_Position";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
ctx->inputs[i].glsl_gl_in = TRUE;
break;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_FragCoord";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
break;
}
/* fallthrough for vertex shader */
case TGSI_SEMANTIC_FACE:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->front_face_emitted) {
ctx->num_inputs--;
return TRUE;
}
name_prefix = "gl_FrontFacing";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
ctx->front_face_emitted = TRUE;
break;
}
case TGSI_SEMANTIC_GENERIC:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->key->coord_replace & (1 << ctx->inputs[i].sid)) {
name_prefix = "vec4(gl_PointCoord, 0.0, 1.0)";
ctx->inputs[i].glsl_predefined_no_emit = TRUE;
ctx->inputs[i].glsl_no_index = TRUE;
break;
}
}
default:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT ||
iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT &&
ctx->key->gs_present)
name_prefix = "out";
else
name_prefix = "ex";
} else
name_prefix = "in";
break;
}
if (ctx->inputs[i].glsl_no_index)
snprintf(ctx->inputs[i].glsl_name, 64, "%s", name_prefix);
else {
if (ctx->inputs[i].name == TGSI_SEMANTIC_FOG)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_f%d", name_prefix, ctx->inputs[i].sid);
else if (ctx->inputs[i].name == TGSI_SEMANTIC_COLOR)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_c%d", name_prefix, ctx->inputs[i].sid);
else if (ctx->inputs[i].name == TGSI_SEMANTIC_GENERIC)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_g%d", name_prefix, ctx->inputs[i].sid);
else
snprintf(ctx->inputs[i].glsl_name, 64, "%s_%d", name_prefix, ctx->inputs[i].first);
}
if (add_two_side) {
snprintf(ctx->inputs[i + 1].glsl_name, 64, "%s_bc%d", name_prefix, ctx->inputs[i + 1].sid);
if (!ctx->front_face_emitted) {
snprintf(ctx->inputs[i + 2].glsl_name, 64, "%s", "gl_FrontFacing");
ctx->front_face_emitted = true;
}
}
break;
case TGSI_FILE_OUTPUT:
i = ctx->num_outputs++;
ctx->outputs[i].name = decl->Semantic.Name;
ctx->outputs[i].sid = decl->Semantic.Index;
ctx->outputs[i].interpolate = decl->Interp.Interpolate;
ctx->outputs[i].first = decl->Range.First;
ctx->outputs[i].glsl_predefined_no_emit = FALSE;
ctx->outputs[i].glsl_no_index = FALSE;
ctx->outputs[i].override_no_wm = FALSE;
ctx->outputs[i].is_int = FALSE;
switch (ctx->outputs[i].name) {
case TGSI_SEMANTIC_POSITION:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX ||
iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
if (ctx->outputs[i].first > 0)
fprintf(stderr,"Illegal position input\n");
name_prefix = "gl_Position";
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->outputs[i].first > 0)
fprintf(stderr,"Illegal position input\n");
name_prefix = "gl_FragDepth";
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
}
break;
case TGSI_SEMANTIC_CLIPDIST:
name_prefix = "gl_ClipDistance";
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->num_clip_dist += 4;
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX &&
ctx->key->gs_present)
ctx->glsl_ver_required = 150;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
name_prefix = "gl_ClipVertex";
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
if (ctx->glsl_ver_required >= 140)
ctx->has_clipvertex = true;
break;
case TGSI_SEMANTIC_COLOR:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
if (ctx->glsl_ver_required < 140) {
ctx->outputs[i].glsl_no_index = TRUE;
if (ctx->outputs[i].sid == 0)
name_prefix = "gl_FrontColor";
else if (ctx->outputs[i].sid == 1)
name_prefix = "gl_FrontSecondaryColor";
} else
name_prefix = "ex";
break;
}
case TGSI_SEMANTIC_BCOLOR:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
if (ctx->glsl_ver_required < 140) {
ctx->outputs[i].glsl_no_index = TRUE;
if (ctx->outputs[i].sid == 0)
name_prefix = "gl_BackColor";
else if (ctx->outputs[i].sid == 1)
name_prefix = "gl_BackSecondaryColor";
break;
} else
name_prefix = "ex";
break;
}
case TGSI_SEMANTIC_PSIZE:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
name_prefix = "gl_PointSize";
break;
} else if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
name_prefix = "gl_PointSize";
break;
}
case TGSI_SEMANTIC_LAYER:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
ctx->outputs[i].is_int = TRUE;
name_prefix = "gl_Layer";
break;
}
case TGSI_SEMANTIC_PRIMID:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
ctx->outputs[i].is_int = TRUE;
name_prefix = "gl_PrimitiveID";
break;
}
case TGSI_SEMANTIC_VIEWPORT_INDEX:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = TRUE;
ctx->outputs[i].glsl_no_index = TRUE;
ctx->outputs[i].override_no_wm = TRUE;
ctx->outputs[i].is_int = TRUE;
name_prefix = "gl_ViewportIndex";
if (ctx->glsl_ver_required >= 140)
ctx->has_viewport_idx = true;
break;
}
case TGSI_SEMANTIC_GENERIC:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX)
if (ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC)
color_offset = -1;
default:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX)
name_prefix = "ex";
else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT)
name_prefix = "fsout";
else
name_prefix = "out";
break;
}
if (ctx->outputs[i].glsl_no_index)
snprintf(ctx->outputs[i].glsl_name, 64, "%s", name_prefix);
else {
if (ctx->outputs[i].name == TGSI_SEMANTIC_FOG)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_f%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_COLOR)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_c%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_BCOLOR)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_bc%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_g%d", name_prefix, ctx->outputs[i].sid);
else
snprintf(ctx->outputs[i].glsl_name, 64, "%s_%d", name_prefix, ctx->outputs[i].first + color_offset);
}
break;
case TGSI_FILE_TEMPORARY:
if (decl->Range.Last) {
if (decl->Range.Last + 1 > ctx->num_temps)
ctx->num_temps = decl->Range.Last + 1;
} else
ctx->num_temps++;
break;
case TGSI_FILE_SAMPLER:
ctx->samplers_used |= (1 << decl->Range.Last);
break;
case TGSI_FILE_CONSTANT:
if (decl->Declaration.Dimension) {
if (ctx->num_ubo >= ARRAY_SIZE(ctx->ubo_idx)) {
fprintf(stderr, "Number of uniforms exceeded, max is %lu\n", ARRAY_SIZE(ctx->ubo_idx));
return FALSE;
}
ctx->ubo_idx[ctx->num_ubo] = decl->Dim.Index2D;
ctx->ubo_sizes[ctx->num_ubo] = decl->Range.Last + 1;
ctx->num_ubo++;
} else {
if (decl->Range.Last) {
if (decl->Range.Last + 1 > ctx->num_consts)
ctx->num_consts = decl->Range.Last + 1;
} else
ctx->num_consts++;
}
break;
case TGSI_FILE_ADDRESS:
ctx->num_address = 1;
break;
case TGSI_FILE_SYSTEM_VALUE:
i = ctx->num_system_values++;
ctx->system_values[i].name = decl->Semantic.Name;
ctx->system_values[i].sid = decl->Semantic.Index;
ctx->system_values[i].glsl_predefined_no_emit = TRUE;
ctx->system_values[i].glsl_no_index = TRUE;
ctx->system_values[i].override_no_wm = TRUE;
ctx->system_values[i].first = decl->Range.First;
if (decl->Semantic.Name == TGSI_SEMANTIC_INSTANCEID) {
name_prefix = "gl_InstanceID";
ctx->has_instanceid = TRUE;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_VERTEXID) {
name_prefix = "gl_VertexID";
ctx->has_ints = TRUE;
} else {
fprintf(stderr, "unsupported system value %d\n", decl->Semantic.Name);
name_prefix = "unknown";
}
snprintf(ctx->system_values[i].glsl_name, 64, "%s", name_prefix);
break;
default:
fprintf(stderr,"unsupported file %d declaration\n", decl->Declaration.File);
break;
}
return TRUE;
}
static boolean
iter_property(struct tgsi_iterate_context *iter,
struct tgsi_full_property *prop)
{
struct dump_ctx *ctx = (struct dump_ctx *) iter;
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
if (prop->u[0].Data == 1)
ctx->write_all_cbufs = TRUE;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_COORD_ORIGIN) {
ctx->fs_coord_origin = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_COORD_PIXEL_CENTER) {
ctx->fs_pixel_center = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_INPUT_PRIM) {
ctx->gs_in_prim = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_OUTPUT_PRIM) {
ctx->gs_out_prim = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
ctx->gs_max_out_verts = prop->u[0].Data;
}
return TRUE;
}
static boolean
iter_immediate(
struct tgsi_iterate_context *iter,
struct tgsi_full_immediate *imm )
{
struct dump_ctx *ctx = (struct dump_ctx *) iter;
int i;
int first = ctx->num_imm;
if (first >= ARRAY_SIZE(ctx->imm)) {
fprintf(stderr, "Number of immediates exceeded, max is: %lu\n", ARRAY_SIZE(ctx->imm));
return FALSE;
}
ctx->imm[first].type = imm->Immediate.DataType;
for (i = 0; i < 4; i++) {
if (imm->Immediate.DataType == TGSI_IMM_FLOAT32) {
ctx->imm[first].val[i].f = imm->u[i].Float;
} else if (imm->Immediate.DataType == TGSI_IMM_UINT32) {
ctx->has_ints = TRUE;
ctx->imm[first].val[i].ui = imm->u[i].Uint;
} else if (imm->Immediate.DataType == TGSI_IMM_INT32) {
ctx->has_ints = TRUE;
ctx->imm[first].val[i].i = imm->u[i].Int;
}
}
ctx->num_imm++;
return TRUE;
}
static char get_swiz_char(int swiz)
{
switch(swiz){
case TGSI_SWIZZLE_X: return 'x';
case TGSI_SWIZZLE_Y: return 'y';
case TGSI_SWIZZLE_Z: return 'z';
case TGSI_SWIZZLE_W: return 'w';
}
return 0;
}
static int emit_cbuf_writes(struct dump_ctx *ctx)
{
char buf[255];
int i;
char *sret;
for (i = 1; i < 8; i++) {
snprintf(buf, 255, "fsout_c%d = fsout_c0;\n", i);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
static const char *atests[PIPE_FUNC_ALWAYS + 1] = {
"false",
"%s < %f",
"%s == %f",
"%s <= %f",
"%s > %f",
"%s != %f",
"%s >= %f",
"true",
};
static int emit_alpha_test(struct dump_ctx *ctx)
{
char buf[255];
char comp_buf[128];
char *sret;
snprintf(comp_buf, 128, atests[ctx->key->alpha_test], "fsout_c0.w", ctx->key->alpha_ref_val);
snprintf(buf, 255, "if (!(%s)) {\n\tdiscard;\n}\n", comp_buf);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
return 0;
}
static int emit_pstipple_pass(struct dump_ctx *ctx)
{
char buf[255];
char *sret;
snprintf(buf, 255, "stip_temp = texture(pstipple_sampler, vec2(gl_FragCoord.x / 32, gl_FragCoord.y / 32)).x;\n");
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
snprintf(buf, 255, "if (stip_temp > 0) {\n\tdiscard;\n}\n");
sret = add_str_to_glsl_main(ctx, buf);
return sret ? 0 : ENOMEM;
}
static int emit_color_select(struct dump_ctx *ctx)
{
char buf[255];
char *sret = NULL;
if (!ctx->key->color_two_side || !(ctx->color_in_mask & 0x3))
return 0;
if (ctx->color_in_mask & 1) {
snprintf(buf, 255, "realcolor0 = gl_FrontFacing ? ex_c0 : ex_bc0;\n");
sret = add_str_to_glsl_main(ctx, buf);
}
if (ctx->color_in_mask & 2) {
snprintf(buf, 255, "realcolor1 = gl_FrontFacing ? ex_c1 : ex_bc1;\n");
sret = add_str_to_glsl_main(ctx, buf);
}
return sret ? 0 : ENOMEM;
}
static int emit_prescale(struct dump_ctx *ctx)
{
char buf[255];
char *sret;
snprintf(buf, 255, "gl_Position.y = gl_Position.y * winsys_adjust.y;\n");
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
snprintf(buf, 255, "gl_Position.z = dot(gl_Position, vec4(0.0, 0.0, winsys_adjust.zw));\n");
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
return 0;
}
static int emit_so_movs(struct dump_ctx *ctx)
{
char buf[255];
int i, j;
char outtype[15] = {0};
char writemask[6];
char *sret;
for (i = 0; i < ctx->so->num_outputs; i++) {
if (ctx->so->output[i].start_component != 0) {
int wm_idx = 0;
writemask[wm_idx++] = '.';
for (j = 0; j < ctx->so->output[i].num_components; j++) {
unsigned idx = ctx->so->output[i].start_component + j;
if (idx >= 4)
break;
if (idx <= 2)
writemask[wm_idx++] = 'x' + idx;
else
writemask[wm_idx++] = 'w';
}
writemask[wm_idx] = '\0';
} else
writemask[0] = 0;
if (ctx->so->output[i].num_components == 4 && writemask[0] == 0 && !(ctx->outputs[ctx->so->output[i].register_index].name == TGSI_SEMANTIC_CLIPDIST)) {
if (ctx->so->output[i].register_index > ctx->num_outputs)
ctx->so_names[i] = NULL;
else
ctx->so_names[i] = strdup(ctx->outputs[ctx->so->output[i].register_index].glsl_name);
ctx->write_so_outputs[i] = false;
} else {
char ntemp[8];
snprintf(ntemp, 8, "tfout%d", i);
ctx->so_names[i] = strdup(ntemp);
ctx->write_so_outputs[i] = true;
}
if (ctx->so->output[i].num_components == 1) {
if (ctx->outputs[ctx->so->output[i].register_index].is_int)
snprintf(outtype, 15, "intBitsToFloat");
else
snprintf(outtype, 15, "float");
} else
snprintf(outtype, 15, "vec%d", ctx->so->output[i].num_components);
if (ctx->so->output[i].register_index >= 255)
continue;
buf[0] = 0;
if (ctx->outputs[ctx->so->output[i].register_index].name == TGSI_SEMANTIC_CLIPDIST) {
snprintf(buf, 255, "tfout%d = %s(clip_dist_temp[%d]%s);\n", i, outtype, ctx->outputs[ctx->so->output[i].register_index].sid,
writemask);
} else {
if (ctx->write_so_outputs[i])
snprintf(buf, 255, "tfout%d = %s(%s%s);\n", i, outtype, ctx->outputs[ctx->so->output[i].register_index].glsl_name, writemask);
}
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
static int emit_clip_dist_movs(struct dump_ctx *ctx)
{
char buf[255];
int i;
char *sret;
if (ctx->num_clip_dist == 0 && ctx->key->clip_plane_enable) {
for (i = 0; i < 8; i++) {
snprintf(buf, 255, "gl_ClipDistance[%d] = dot(%s, clipp[%d]);\n", i, ctx->has_clipvertex ? "clipv_tmp" : "gl_Position", i);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
for (i = 0; i < ctx->num_clip_dist; i++) {
int clipidx = i < 4 ? 0 : 1;
char swiz = i & 3;
char wm = 0;
switch (swiz) {
case 0: wm = 'x'; break;
case 1: wm = 'y'; break;
case 2: wm = 'z'; break;
case 3: wm = 'w'; break;
}
snprintf(buf, 255, "gl_ClipDistance[%d] = clip_dist_temp[%d].%c;\n",
i, clipidx, wm);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
#define emit_arit_op2(op) snprintf(buf, 255, "%s = %s(%s((%s %s %s))%s);\n", dsts[0], dstconv, dtypeprefix, srcs[0], op, srcs[1], writemask)
#define emit_op1(op) snprintf(buf, 255, "%s = %s(%s(%s(%s))%s);\n", dsts[0], dstconv, dtypeprefix, op, srcs[0], writemask)
#define emit_compare(op) snprintf(buf, 255, "%s = %s(%s((%s(%s(%s), %s(%s))))%s);\n", dsts[0], dstconv, dtypeprefix, op, svec4, srcs[0], svec4, srcs[1], writemask)
#define emit_ucompare(op) snprintf(buf, 255, "%s = %s(uintBitsToFloat(%s(%s(%s(%s), %s(%s))%s) * %s(0xffffffff)));\n", dsts[0], dstconv, udstconv, op, svec4, srcs[0], svec4, srcs[1], writemask, udstconv)
static int emit_buf(struct dump_ctx *ctx, char *buf)
{
int i;
char *sret;
for (i = 0; i < ctx->indent_level; i++) {
sret = add_str_to_glsl_main(ctx, "\t");
if (!sret)
return ENOMEM;
}
sret = add_str_to_glsl_main(ctx, buf);
return sret ? 0 : ENOMEM;
}
#define EMIT_BUF_WITH_RET(ctx, buf) do { \
int ret = emit_buf((ctx), (buf)); \
if (ret) return FALSE; \
} while(0)
static int translate_tex(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
int sreg_index,
char srcs[4][255],
char dsts[3][255],
const char *writemask,
const char *dstconv,
const char *dtypeprefix)
{
char *twm, *gwm = NULL, *txfi;
bool is_shad = false;
char buf[512];
char offbuf[128] = {0};
char bias[128] = {0};
int sampler_index;
char *tex_ext;
ctx->samplers[sreg_index].tgsi_sampler_type = inst->Texture.Texture;
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
is_shad = true;
case TGSI_TEXTURE_CUBE_ARRAY:
ctx->uses_cube_array = true;
break;
case TGSI_TEXTURE_2D_MSAA:
case TGSI_TEXTURE_2D_ARRAY_MSAA:
ctx->uses_sampler_ms = true;
break;
case TGSI_TEXTURE_BUFFER:
ctx->uses_sampler_buf = true;
break;
case TGSI_TEXTURE_SHADOWRECT:
is_shad = true;
case TGSI_TEXTURE_RECT:
ctx->uses_sampler_rect = true;
break;
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
is_shad = true;
break;
}
if (ctx->cfg->glsl_version >= 140)
if (ctx->uses_sampler_rect || ctx->uses_sampler_buf)
ctx->glsl_ver_required = 140;
sampler_index = 1;
if (inst->Instruction.Opcode == TGSI_OPCODE_LODQ)
ctx->uses_lodq = true;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
/* no lod parameter for txq for these */
if (inst->Texture.Texture != TGSI_TEXTURE_RECT &&
inst->Texture.Texture != TGSI_TEXTURE_SHADOWRECT &&
inst->Texture.Texture != TGSI_TEXTURE_BUFFER &&
inst->Texture.Texture != TGSI_TEXTURE_2D_MSAA &&
inst->Texture.Texture != TGSI_TEXTURE_2D_ARRAY_MSAA)
snprintf(bias, 128, ", int(%s.w)", srcs[0]);
/* need to emit a textureQueryLevels */
if (inst->Dst[0].Register.WriteMask & 0x8) {
ctx->uses_txq_levels = true;
snprintf(buf, 255, "%s = %s(%s(textureQueryLevels(%s)));\n", dsts[0], dstconv, dtypeprefix, srcs[sampler_index]);
return emit_buf(ctx, buf);
} else {
snprintf(buf, 255, "%s = %s(%s(textureSize(%s%s)));\n", dsts[0], dstconv, dtypeprefix, srcs[sampler_index], bias);
return emit_buf(ctx, buf);
}
}
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_BUFFER:
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP)
twm = "";
else
twm = ".x";
txfi = "int";
break;
case TGSI_TEXTURE_1D_ARRAY:
twm = ".xy";
txfi = "ivec2";
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP)
twm = "";
else
twm = ".xy";
txfi = "ivec2";
break;
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_3D:
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP)
twm = "";
else
twm = ".xyz";
txfi = "ivec3";
break;
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_2D_ARRAY:
twm = ".xyz";
txfi = "ivec3";
break;
case TGSI_TEXTURE_2D_MSAA:
twm = ".xy";
txfi = "ivec2";
break;
case TGSI_TEXTURE_2D_ARRAY_MSAA:
twm = ".xyz";
txfi = "ivec3";
break;
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
case TGSI_TEXTURE_CUBE_ARRAY:
default:
twm = "";
txfi = "";
break;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
gwm = ".x";
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
gwm = ".xy";
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
gwm = ".xyz";
break;
default:
gwm = "";
break;
}
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2 || inst->Instruction.Opcode == TGSI_OPCODE_TXL2 || inst->Instruction.Opcode == TGSI_OPCODE_TEX2) {
sampler_index = 2;
if (inst->Instruction.Opcode != TGSI_OPCODE_TEX2)
snprintf(bias, 64, ", %s.x", srcs[1]);
else if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
snprintf(bias, 64, ", float(%s)", srcs[1]);
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXB || inst->Instruction.Opcode == TGSI_OPCODE_TXL)
snprintf(bias, 64, ", %s.w", srcs[0]);
else if (inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
if (inst->Texture.Texture == TGSI_TEXTURE_1D ||
inst->Texture.Texture == TGSI_TEXTURE_2D ||
inst->Texture.Texture == TGSI_TEXTURE_2D_MSAA ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY_MSAA ||
inst->Texture.Texture == TGSI_TEXTURE_3D ||
inst->Texture.Texture == TGSI_TEXTURE_1D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY) {
snprintf(bias, 64, ", int(%s.w)", srcs[0]);
}
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
snprintf(bias, 128, ", %s%s, %s%s", srcs[1], gwm, srcs[2], gwm);
sampler_index = 3;
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TG4) {
sampler_index = 2;
ctx->uses_tg4 = true;
} else
bias[0] = 0;
if (inst->Instruction.Opcode == TGSI_OPCODE_LODQ) {
tex_ext = "QueryLOD";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
if (inst->Texture.Texture == TGSI_TEXTURE_CUBE || inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY || inst->Texture.Texture == TGSI_TEXTURE_1D_ARRAY)
tex_ext = "";
else if (inst->Texture.NumOffsets == 1)
tex_ext = "ProjOffset";
else
tex_ext = "Proj";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXL || inst->Instruction.Opcode == TGSI_OPCODE_TXL2) {
if (inst->Texture.NumOffsets == 1)
tex_ext = "LodOffset";
else
tex_ext = "Lod";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
if (inst->Texture.NumOffsets == 1)
tex_ext = "GradOffset";
else
tex_ext = "Grad";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TG4) {
if (inst->Texture.NumOffsets == 1)
tex_ext = "GatherOffset";
else
tex_ext = "Gather";
} else {
if (inst->Texture.NumOffsets == 1)
tex_ext = "Offset";
else
tex_ext = "";
}
if (inst->Texture.NumOffsets == 1) {
struct immed *imd = &ctx->imm[(inst->TexOffsets[0].Index)];
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
snprintf(offbuf, 25, ", int(%d)", imd->val[inst->TexOffsets[0].SwizzleX].i);
break;
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
snprintf(offbuf, 25, ", ivec2(%d, %d)", imd->val[inst->TexOffsets[0].SwizzleX].i, imd->val[inst->TexOffsets[0].SwizzleY].i);
break;
case TGSI_TEXTURE_3D:
snprintf(offbuf, 25, ", ivec3(%d, %d, %d)", imd->val[inst->TexOffsets[0].SwizzleX].i, imd->val[inst->TexOffsets[0].SwizzleY].i,
imd->val[inst->TexOffsets[0].SwizzleZ].i);
break;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXL || inst->Instruction.Opcode == TGSI_OPCODE_TXL2 || inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
char tmp[128];
strcpy(tmp, offbuf);
strcpy(offbuf, bias);
strcpy(bias, tmp);
}
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
snprintf(buf, 255, "%s = %s(texelFetch%s(%s, %s(%s%s)%s%s)%s);\n", dsts[0], dstconv, tex_ext, srcs[sampler_index], txfi, srcs[0], twm, bias, offbuf, ctx->outputs[0].override_no_wm ? "" : writemask);
} else if (ctx->cfg->glsl_version < 140 && ctx->uses_sampler_rect) {
/* rect is special in GLSL 1.30 */
if (inst->Texture.Texture == TGSI_TEXTURE_RECT)
snprintf(buf, 255, "%s = texture2DRect(%s, %s.xy)%s;\n", dsts[0], srcs[sampler_index], srcs[0], writemask);
else if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT)
snprintf(buf, 255, "%s = shadow2DRect(%s, %s.xyz)%s;\n", dsts[0], srcs[sampler_index], srcs[0], writemask);
} else if (is_shad) { /* TGSI returns 1.0 in alpha */
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
const struct tgsi_full_src_register *src = &inst->Src[sampler_index];
snprintf(buf, 255, "%s = %s(vec4(vec4(texture%s(%s, %s%s%s%s)) * %sshadmask%d + %sshadadd%d)%s);\n", dsts[0], dstconv, tex_ext, srcs[sampler_index], srcs[0], twm, offbuf, bias, cname, src->Register.Index, cname, src->Register.Index, writemask);
} else
snprintf(buf, 255, "%s = %s(texture%s(%s, %s%s%s%s)%s);\n", dsts[0], dstconv, tex_ext, srcs[sampler_index], srcs[0], twm, offbuf, bias, ctx->outputs[0].override_no_wm ? "" : writemask);
return emit_buf(ctx, buf);
}
static boolean
iter_instruction(struct tgsi_iterate_context *iter,
struct tgsi_full_instruction *inst)
{
struct dump_ctx *ctx = (struct dump_ctx *)iter;
char srcs[4][255], dsts[3][255], buf[512];
uint instno = ctx->instno++;
int i;
int j;
int sreg_index = 0;
char dstconv[32] = {0};
char udstconv[32] = {0};
char writemask[6] = {0};
enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
enum tgsi_opcode_type stype = tgsi_opcode_infer_src_type(inst->Instruction.Opcode);
char *dtypeprefix="", *stypeprefix = "", *svec4 = "vec4";
bool stprefix = false;
bool override_no_wm[4];
char *sret;
int ret;
if (ctx->prog_type == -1)
ctx->prog_type = iter->processor.Processor;
if (dtype == TGSI_TYPE_SIGNED || dtype == TGSI_TYPE_UNSIGNED ||
stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED)
ctx->has_ints = TRUE;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
dtypeprefix = "intBitsToFloat";
} else {
switch (dtype) {
case TGSI_TYPE_UNSIGNED:
dtypeprefix = "uintBitsToFloat";
break;
case TGSI_TYPE_SIGNED:
dtypeprefix = "intBitsToFloat";
break;
default:
break;
}
}
switch (stype) {
case TGSI_TYPE_UNSIGNED:
stypeprefix = "floatBitsToUint";
svec4 = "uvec4";
stprefix = true;
break;
case TGSI_TYPE_SIGNED:
stypeprefix = "floatBitsToInt";
svec4 = "ivec4";
stprefix = true;
break;
default:
break;
}
if (instno == 0) {
sret = add_str_to_glsl_main(ctx, "void main(void)\n{\n");
if (!sret)
return FALSE;
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
ret = emit_color_select(ctx);
if (ret)
return FALSE;
}
}
for (i = 0; i < inst->Instruction.NumDstRegs; i++) {
const struct tgsi_full_dst_register *dst = &inst->Dst[i];
if (dst->Register.WriteMask != TGSI_WRITEMASK_XYZW) {
int wm_idx = 0;
writemask[wm_idx++] = '.';
if (dst->Register.WriteMask & 0x1)
writemask[wm_idx++] = 'x';
if (dst->Register.WriteMask & 0x2)
writemask[wm_idx++] = 'y';
if (dst->Register.WriteMask & 0x4)
writemask[wm_idx++] = 'z';
if (dst->Register.WriteMask & 0x8)
writemask[wm_idx++] = 'w';
if (wm_idx == 2) {
snprintf(dstconv, 6, "float");
snprintf(udstconv, 6, "uint");
} else {
snprintf(dstconv, 6, "vec%d", wm_idx-1);
snprintf(udstconv, 6, "uvec%d", wm_idx-1);
}
} else {
snprintf(dstconv, 6, "vec4");
snprintf(udstconv, 6, "uvec4");
}
if (dst->Register.File == TGSI_FILE_OUTPUT) {
for (j = 0; j < ctx->num_outputs; j++) {
if (ctx->outputs[j].first == dst->Register.Index) {
if (ctx->glsl_ver_required >= 140 && ctx->outputs[j].name == TGSI_SEMANTIC_CLIPVERTEX) {
snprintf(dsts[i], 255, "clipv_tmp");
} else if (ctx->outputs[j].name == TGSI_SEMANTIC_CLIPDIST) {
snprintf(dsts[i], 255, "clip_dist_temp[%d]", ctx->outputs[j].sid);
} else {
snprintf(dsts[i], 255, "%s%s", ctx->outputs[j].glsl_name, ctx->outputs[j].override_no_wm ? "" : writemask);
if (ctx->outputs[j].is_int) {
if (!strcmp(dtypeprefix, ""))
dtypeprefix = "floatBitsToInt";
snprintf(dstconv, 6, "int");
}
if (ctx->outputs[j].name == TGSI_SEMANTIC_PSIZE) {
snprintf(dstconv, 6, "float");
break;
}
}
}
}
}
else if (dst->Register.File == TGSI_FILE_TEMPORARY) {
if (dst->Register.Indirect) {
snprintf(dsts[i], 255, "temps[addr0 + %d]%s", dst->Register.Index, writemask);
} else
snprintf(dsts[i], 255, "temps[%d]%s", dst->Register.Index, writemask);
}
}
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
const struct tgsi_full_src_register *src = &inst->Src[i];
char swizzle[8] = {0};
char prefix[6] = {0};
char arrayname[8] = {0};
int swz_idx = 0, pre_idx = 0;
boolean isabsolute = src->Register.Absolute;
override_no_wm[i] = false;
if (isabsolute)
swizzle[swz_idx++] = ')';
if (src->Register.Negate)
prefix[pre_idx++] = '-';
if (isabsolute)
strcpy(&prefix[pre_idx++], "abs(");
if (src->Register.Dimension)
sprintf(arrayname, "[%d]", src->Dimension.Index);
if (src->Register.SwizzleX != TGSI_SWIZZLE_X ||
src->Register.SwizzleY != TGSI_SWIZZLE_Y ||
src->Register.SwizzleZ != TGSI_SWIZZLE_Z ||
src->Register.SwizzleW != TGSI_SWIZZLE_W) {
swizzle[swz_idx++] = '.';
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleX);
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleY);
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleZ);
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleW);
}
if (src->Register.File == TGSI_FILE_INPUT) {
for (j = 0; j < ctx->num_inputs; j++)
if (ctx->inputs[j].first == src->Register.Index) {
if (ctx->key->color_two_side && ctx->inputs[j].name == TGSI_SEMANTIC_COLOR)
snprintf(srcs[i], 255, "%s(%s%s%d%s%s)", stypeprefix, prefix, "realcolor", ctx->inputs[j].sid, arrayname, swizzle);
else if (ctx->inputs[j].glsl_gl_in) {
/* GS input clipdist requires a conversion */
if (ctx->inputs[j].name == TGSI_SEMANTIC_CLIPDIST) {
int idx;
idx = ctx->inputs[j].sid * 4;
idx += src->Register.SwizzleX;
snprintf(srcs[i], 255, "%s(vec4(%sgl_in%s.%s[%d]))", stypeprefix, prefix, arrayname, ctx->inputs[j].glsl_name, idx);
} else {
snprintf(srcs[i], 255, "%s(vec4(%sgl_in%s.%s)%s)", stypeprefix, prefix, arrayname, ctx->inputs[j].glsl_name, swizzle);
}
}
else if (ctx->inputs[j].name == TGSI_SEMANTIC_PRIMID)
snprintf(srcs[i], 255, "%s(vec4(intBitsToFloat(%s)))", stypeprefix, ctx->inputs[j].glsl_name);
else if (ctx->inputs[j].name == TGSI_SEMANTIC_FACE)
snprintf(srcs[i], 255, "%s(%s ? 1.0 : -1.0)", stypeprefix, ctx->inputs[j].glsl_name);
else
snprintf(srcs[i], 255, "%s(%s%s%s%s)", stypeprefix, prefix, ctx->inputs[j].glsl_name, arrayname, swizzle);
override_no_wm[i] = ctx->inputs[j].override_no_wm;
break;
}
}
else if (src->Register.File == TGSI_FILE_TEMPORARY) {
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%s%c%stemps[addr0 + %d]%s%c", stypeprefix, stprefix ? '(' : ' ', prefix, src->Register.Index, swizzle, stprefix ? ')' : ' ');
} else
snprintf(srcs[i], 255, "%s%c%stemps[%d]%s%c", stypeprefix, stprefix ? '(' : ' ', prefix, src->Register.Index, swizzle, stprefix ? ')' : ' ');
} else if (src->Register.File == TGSI_FILE_CONSTANT) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
int dim = 0;
if (src->Register.Dimension) {
dim = src->Dimension.Index;
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%s(%s%subo%dcontents[addr0 + %d]%s)", stypeprefix, prefix, cname, dim, src->Register.Index, swizzle);
} else
snprintf(srcs[i], 255, "%s(%s%subo%dcontents[%d]%s)", stypeprefix, prefix, cname, dim, src->Register.Index, swizzle);
} else {
const char *csp;
ctx->has_ints = TRUE;
if (stype == TGSI_TYPE_FLOAT || stype == TGSI_TYPE_UNTYPED)
csp = "uintBitsToFloat";
else if (stype == TGSI_TYPE_SIGNED)
csp = "ivec4";
else
csp = "";
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%s%s(%sconst%d[addr0 + %d]%s)", prefix, csp, cname, dim, src->Register.Index, swizzle);
} else
snprintf(srcs[i], 255, "%s%s(%sconst%d[%d]%s)", prefix, csp, cname, dim, src->Register.Index, swizzle);
}
} else if (src->Register.File == TGSI_FILE_SAMPLER) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
snprintf(srcs[i], 255, "%ssamp%d%s", cname, src->Register.Index, swizzle);
sreg_index = src->Register.Index;
} else if (src->Register.File == TGSI_FILE_IMMEDIATE) {
struct immed *imd = &ctx->imm[(src->Register.Index)];
int idx = src->Register.SwizzleX;
char temp[48];
const char *vtype = "vec4";
const char *imm_stypeprefix = stypeprefix;
if (imd->type == TGSI_IMM_UINT32 || imd->type == TGSI_IMM_INT32) {
if (imd->type == TGSI_IMM_UINT32)
vtype = "uvec4";
else
vtype = "ivec4";
if (stype == TGSI_TYPE_UNSIGNED && imd->type == TGSI_IMM_INT32)
imm_stypeprefix = "uvec4";
else if (stype == TGSI_TYPE_SIGNED && imd->type == TGSI_IMM_UINT32)
imm_stypeprefix = "ivec4";
else if (stype == TGSI_TYPE_FLOAT || stype == TGSI_TYPE_UNTYPED) {
if (imd->type == TGSI_IMM_INT32)
imm_stypeprefix = "intBitsToFloat";
else
imm_stypeprefix = "uintBitsToFloat";
} else if (stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_SIGNED)
imm_stypeprefix = "";
}
/* build up a vec4 of immediates */
snprintf(srcs[i], 255, "%s(%s%s(", imm_stypeprefix, prefix, vtype);
for (j = 0; j < 4; j++) {
if (j == 0)
idx = src->Register.SwizzleX;
else if (j == 1)
idx = src->Register.SwizzleY;
else if (j == 2)
idx = src->Register.SwizzleZ;
else if (j == 3)
idx = src->Register.SwizzleW;
switch (imd->type) {
case TGSI_IMM_FLOAT32:
if (isinf(imd->val[idx].f) || isnan(imd->val[idx].f)) {
ctx->has_ints = TRUE;
snprintf(temp, 48, "uintBitsToFloat(%uU)", imd->val[idx].ui);
} else
snprintf(temp, 25, "%.8g", imd->val[idx].f);
break;
case TGSI_IMM_UINT32:
snprintf(temp, 25, "%uU", imd->val[idx].ui);
break;
case TGSI_IMM_INT32:
snprintf(temp, 25, "%d", imd->val[idx].i);
break;
}
strncat(srcs[i], temp, 255);
if (j < 3)
strcat(srcs[i], ",");
else {
snprintf(temp, 4, "))%c", isabsolute ? ')' : 0);
strncat(srcs[i], temp, 255);
}
}
} else if (src->Register.File == TGSI_FILE_SYSTEM_VALUE) {
for (j = 0; j < ctx->num_system_values; j++)
if (ctx->system_values[j].first == src->Register.Index) {
if (ctx->system_values[j].name == TGSI_SEMANTIC_VERTEXID)
snprintf(srcs[i], 255, "%s(vec4(intBitsToFloat(%s)))", stypeprefix, ctx->system_values[j].glsl_name);
else
snprintf(srcs[i], 255, "%s%s", prefix, ctx->system_values[j].glsl_name);
override_no_wm[i] = ctx->system_values[j].override_no_wm;
break;
}
}
}
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_SQRT:
snprintf(buf, 255, "%s = sqrt(vec4(%s))%s;\n", dsts[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LRP:
snprintf(buf, 255, "%s = mix(vec4(%s), vec4(%s), vec4(%s))%s;\n", dsts[0], srcs[2], srcs[1], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DP2:
snprintf(buf, 255, "%s = %s(dot(vec2(%s), vec2(%s)));\n", dsts[0], dstconv, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DP3:
snprintf(buf, 255, "%s = %s(dot(vec3(%s), vec3(%s)));\n", dsts[0], dstconv, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DP4:
snprintf(buf, 255, "%s = %s(dot(vec4(%s), vec4(%s)));\n", dsts[0], dstconv, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DPH:
snprintf(buf, 255, "%s = %s(dot(vec4(vec3(%s), 1.0), vec4(%s)));\n", dsts[0], dstconv, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MAX:
case TGSI_OPCODE_IMAX:
case TGSI_OPCODE_UMAX:
snprintf(buf, 255, "%s = %s(%s(max(%s, %s)));\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MIN:
case TGSI_OPCODE_IMIN:
case TGSI_OPCODE_UMIN:
snprintf(buf, 255, "%s = %s(%s(min(%s, %s)));\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ABS:
case TGSI_OPCODE_IABS:
emit_op1("abs");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_KILL_IF:
snprintf(buf, 255, "if (any(lessThan(%s, vec4(0.0))))\ndiscard;\n", srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_IF:
case TGSI_OPCODE_UIF:
snprintf(buf, 255, "if (any(bvec4(%s))) {\n", srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->indent_level++;
break;
case TGSI_OPCODE_ELSE:
snprintf(buf, 255, "} else {\n");
ctx->indent_level--;
EMIT_BUF_WITH_RET(ctx, buf);
ctx->indent_level++;
break;
case TGSI_OPCODE_ENDIF:
snprintf(buf, 255, "}\n");
ctx->indent_level--;
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_KILL:
snprintf(buf, 255, "discard;\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DST:
snprintf(buf, 512, "%s = vec4(1.0, %s.y * %s.y, %s.z, %s.w);\n", dsts[0],
srcs[0], srcs[1], srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LIT:
snprintf(buf, 512, "%s = %s(vec4(1.0, max(%s.x, 0.0), step(0.0, %s.x) * pow(max(0.0, %s.y), clamp(%s.w, -128.0, 128.0)), 1.0)%s);\n", dsts[0], dstconv, srcs[0], srcs[0], srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_EX2:
emit_op1("exp2");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LG2:
emit_op1("log2");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_EXP:
snprintf(buf, 512, "%s = %s(vec4(pow(2.0, floor(%s.x)), %s.x - floor(%s.x), exp2(%s.x), 1.0)%s);\n", dsts[0], dstconv, srcs[0], srcs[0], srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LOG:
snprintf(buf, 512, "%s = %s(vec4(floor(log2(%s.x)), %s.x / pow(2.0, floor(log2(%s.x))), log2(%s.x), 1.0)%s);\n", dsts[0], dstconv, srcs[0], srcs[0], srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_COS:
emit_op1("cos");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SIN:
emit_op1("sin");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SCS:
snprintf(buf, 255, "%s = %s(vec4(cos(%s.x), sin(%s.x), 0, 1)%s);\n", dsts[0], dstconv,
srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DDX:
emit_op1("dFdx");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DDY:
emit_op1("dFdy");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_RCP:
snprintf(buf, 255, "%s = %s(1.0/(%s));\n", dsts[0], dstconv, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_FLR:
emit_op1("floor");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ROUND:
emit_op1("round");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISSG:
emit_op1("sign");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_CEIL:
emit_op1("ceil");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_FRC:
emit_op1("fract");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_TRUNC:
emit_op1("trunc");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SSG:
emit_op1("sign");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_RSQ:
snprintf(buf, 255, "%s = %s(inversesqrt(%s.x));\n", dsts[0], dstconv, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MOV:
snprintf(buf, 255, "%s = %s(%s(%s%s));\n", dsts[0], dstconv, dtypeprefix, srcs[0], override_no_wm[0] ? "" : writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ADD:
emit_arit_op2("+");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UADD:
snprintf(buf, 255, "%s = %s(%s(ivec4((uvec4(%s) + uvec4(%s))))%s);\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SUB:
emit_arit_op2("-");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MUL:
emit_arit_op2("*");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DIV:
emit_arit_op2("/");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UMUL:
snprintf(buf, 255, "%s = %s(%s((uvec4(%s) * uvec4(%s)))%s);\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UMOD:
snprintf(buf, 255, "%s = %s(%s((uvec4(%s) %% uvec4(%s)))%s);\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_IDIV:
snprintf(buf, 255, "%s = %s(%s((ivec4(%s) / ivec4(%s)))%s);\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UDIV:
snprintf(buf, 255, "%s = %s(%s((uvec4(%s) / uvec4(%s)))%s);\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISHR:
case TGSI_OPCODE_USHR:
emit_arit_op2(">>");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SHL:
emit_arit_op2("<<");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MAD:
snprintf(buf, 255, "%s = %s((%s * %s + %s)%s);\n", dsts[0], dstconv, srcs[0], srcs[1], srcs[2], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UMAD:
snprintf(buf, 255, "%s = %s(%s((%s * %s + %s)%s));\n", dsts[0], dstconv, dtypeprefix, srcs[0], srcs[1], srcs[2], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_OR:
emit_arit_op2("|");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_AND:
emit_arit_op2("&");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_XOR:
emit_arit_op2("^");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MOD:
emit_arit_op2("%");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXB2:
case TGSI_OPCODE_TXL2:
case TGSI_OPCODE_TXD:
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_TG4:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_TXQ:
case TGSI_OPCODE_LODQ:
ret = translate_tex(ctx, inst, sreg_index, srcs, dsts, writemask, dstconv, dtypeprefix);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_I2F:
snprintf(buf, 255, "%s = %s(ivec4(%s));\n", dsts[0], dstconv, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_U2F:
snprintf(buf, 255, "%s = %s(uvec4(%s));\n", dsts[0], dstconv, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_F2I:
snprintf(buf, 255, "%s = %s(%s(ivec4(%s)));\n", dsts[0], dstconv, dtypeprefix, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_F2U:
snprintf(buf, 255, "%s = %s(%s(uvec4(%s)));\n", dsts[0], dstconv, dtypeprefix, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_NOT:
snprintf(buf, 255, "%s = %s(uintBitsToFloat(~(uvec4(%s))));\n", dsts[0], dstconv, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_INEG:
snprintf(buf, 255, "%s = %s(intBitsToFloat(-(ivec4(%s))));\n", dsts[0], dstconv, srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SEQ:
emit_compare("equal");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_USEQ:
case TGSI_OPCODE_FSEQ:
emit_ucompare("equal");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SLT:
emit_compare("lessThan");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_USLT:
case TGSI_OPCODE_FSLT:
emit_ucompare("lessThan");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SNE:
emit_compare("notEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_USNE:
case TGSI_OPCODE_FSNE:
emit_ucompare("notEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SGE:
emit_compare("greaterThanEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_USGE:
case TGSI_OPCODE_FSGE:
emit_ucompare("greaterThanEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_POW:
snprintf(buf, 255, "%s = %s(pow(%s, %s));\n", dsts[0], dstconv, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_CMP:
snprintf(buf, 255, "%s = mix(%s, %s, greaterThanEqual(%s, vec4(0.0)))%s;\n", dsts[0], srcs[1], srcs[2], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UCMP:
snprintf(buf, 255, "%s = mix(%s, %s, notEqual(floatBitsToUint(%s), uvec4(0.0)))%s;\n", dsts[0], srcs[2], srcs[1], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_END:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
ret = emit_prescale(ctx);
if (ret)
return FALSE;
if (ctx->so && !ctx->key->gs_present) {
ret = emit_so_movs(ctx);
if (ret)
return FALSE;
}
ret = emit_clip_dist_movs(ctx);
if (ret)
return FALSE;
} else if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->key->pstipple_tex) {
ret = emit_pstipple_pass(ctx);
if (ret)
return FALSE;
}
if (ctx->key->add_alpha_test) {
ret = emit_alpha_test(ctx);
if (ret)
return FALSE;
}
if (ctx->write_all_cbufs) {
ret = emit_cbuf_writes(ctx);
if (ret)
return FALSE;
}
}
sret = add_str_to_glsl_main(ctx, "}\n");
if (!sret)
return FALSE;
break;
case TGSI_OPCODE_RET:
EMIT_BUF_WITH_RET(ctx, "return;\n");
break;
case TGSI_OPCODE_ARL:
snprintf(buf, 255, "addr0 = int(floor(%s)%s);\n", srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UARL:
snprintf(buf, 255, "addr0 = int(%s);\n", srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_XPD:
snprintf(buf, 255, "%s = %s(cross(vec3(%s), vec3(%s)));\n", dsts[0], dstconv, srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_BGNLOOP:
snprintf(buf, 255, "do {\n");
EMIT_BUF_WITH_RET(ctx, buf);
ctx->indent_level++;
break;
case TGSI_OPCODE_ENDLOOP:
ctx->indent_level--;
snprintf(buf, 255, "} while(true);\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_BRK:
snprintf(buf, 255, "break;\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_EMIT:
if (ctx->so && ctx->key->gs_present)
emit_so_movs(ctx);
emit_clip_dist_movs(ctx);
snprintf(buf, 255, "EmitVertex();\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ENDPRIM:
snprintf(buf, 255, "EndPrimitive();\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
default:
fprintf(stderr,"failed to convert opcode %d\n", inst->Instruction.Opcode);
break;
}
if (inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE) {
snprintf(buf, 255, "%s = clamp(%s, 0.0, 1.0);\n", dsts[0], dsts[0]);
EMIT_BUF_WITH_RET(ctx, buf);
}
return TRUE;
}
static boolean
prolog(struct tgsi_iterate_context *iter)
{
return TRUE;
}
#define STRCAT_WITH_RET(mainstr, buf) do { \
(mainstr) = strcat_realloc((mainstr), (buf)); \
if ((mainstr) == NULL) return NULL; \
} while(0)
static char *emit_header(struct dump_ctx *ctx, char *glsl_hdr)
{
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY || ctx->glsl_ver_required == 150)
STRCAT_WITH_RET(glsl_hdr, "#version 150\n");
else if (ctx->glsl_ver_required == 140)
STRCAT_WITH_RET(glsl_hdr, "#version 140\n");
else
STRCAT_WITH_RET(glsl_hdr, "#version 130\n");
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX && vrend_shader_use_explicit)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_explicit_attrib_location : enable\n");
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT && fs_emit_layout(ctx))
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_fragment_coord_conventions : enable\n");
if (ctx->glsl_ver_required < 140 && ctx->uses_sampler_rect)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_texture_rectangle : require\n");
if (ctx->uses_cube_array)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_texture_cube_map_array : require\n");
if (ctx->has_ints)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_shader_bit_encoding : require\n");
if (ctx->uses_sampler_ms)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_texture_multisample : require\n");
if (ctx->has_instanceid)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_draw_instanced : require\n");
if (ctx->num_ubo)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_uniform_buffer_object : require\n");
if (ctx->uses_lodq)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_texture_query_lod : require\n");
if (ctx->uses_txq_levels)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_texture_query_levels : require\n");
if (ctx->uses_tg4)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_texture_gather : require\n");
if (ctx->has_viewport_idx)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_viewport_array : require\n");
return glsl_hdr;
}
const char *vrend_shader_samplertypeconv(int sampler_type, int *is_shad)
{
switch (sampler_type) {
case TGSI_TEXTURE_BUFFER: return "Buffer";
case TGSI_TEXTURE_1D: return "1D";
case TGSI_TEXTURE_2D: return "2D";
case TGSI_TEXTURE_3D: return "3D";
case TGSI_TEXTURE_CUBE: return "Cube";
case TGSI_TEXTURE_RECT: return "2DRect";
case TGSI_TEXTURE_SHADOW1D: *is_shad = 1; return "1DShadow";
case TGSI_TEXTURE_SHADOW2D: *is_shad = 1; return "2DShadow";
case TGSI_TEXTURE_SHADOWRECT: *is_shad = 1; return "2DRectShadow";
case TGSI_TEXTURE_1D_ARRAY: return "1DArray";
case TGSI_TEXTURE_2D_ARRAY: return "2DArray";
case TGSI_TEXTURE_SHADOW1D_ARRAY: *is_shad = 1; return "1DArrayShadow";
case TGSI_TEXTURE_SHADOW2D_ARRAY: *is_shad = 1; return "2DArrayShadow";
case TGSI_TEXTURE_SHADOWCUBE: *is_shad = 1; return "CubeShadow";
case TGSI_TEXTURE_CUBE_ARRAY: return "CubeArray";
case TGSI_TEXTURE_SHADOWCUBE_ARRAY: *is_shad = 1; return "CubeArrayShadow";
case TGSI_TEXTURE_2D_MSAA: return "2DMS";
case TGSI_TEXTURE_2D_ARRAY_MSAA: return "2DMSArray";
default: return NULL;
}
}
static const char *get_interp_string(int interpolate, boolean flatshade)
{
switch (interpolate) {
case TGSI_INTERPOLATE_LINEAR:
return "noperspective ";
case TGSI_INTERPOLATE_PERSPECTIVE:
return "smooth ";
case TGSI_INTERPOLATE_CONSTANT:
return "flat ";
case TGSI_INTERPOLATE_COLOR:
if (flatshade)
return "flat ";
}
return NULL;
}
static char *emit_ios(struct dump_ctx *ctx, char *glsl_hdr)
{
int i;
char buf[255];
char postfix[8];
const char *prefix = "";
ctx->num_interps = 0;
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT) {
if (fs_emit_layout(ctx)) {
boolean upper_left = !(ctx->fs_coord_origin ^ ctx->key->invert_fs_origin);
char comma = (upper_left && ctx->fs_pixel_center) ? ',' : ' ';
snprintf(buf, 255, "layout(%s%c%s) in vec4 gl_FragCoord;\n",
upper_left ? "origin_upper_left" : "",
comma,
ctx->fs_pixel_center ? "pixel_center_integer" : "");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
snprintf(buf, 255, "layout(%s) in;\n", prim_to_name(ctx->gs_in_prim));
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "layout(%s, max_vertices = %d) out;\n", prim_to_name(ctx->gs_out_prim), ctx->gs_max_out_verts);
STRCAT_WITH_RET(glsl_hdr, buf);
}
for (i = 0; i < ctx->num_inputs; i++) {
if (!ctx->inputs[i].glsl_predefined_no_emit) {
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX && vrend_shader_use_explicit) {
snprintf(buf, 255, "layout(location=%d) ", ctx->inputs[i].first);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT &&
(ctx->inputs[i].name == TGSI_SEMANTIC_GENERIC ||
ctx->inputs[i].name == TGSI_SEMANTIC_COLOR)) {
prefix = get_interp_string(ctx->inputs[i].interpolate, ctx->key->flatshade);
if (!prefix)
prefix = "";
ctx->num_interps++;
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
snprintf(postfix, 8, "[%d]", gs_input_prim_to_size(ctx->gs_in_prim));
} else
postfix[0] = 0;
snprintf(buf, 255, "%sin vec4 %s%s;\n", prefix, ctx->inputs[i].glsl_name, postfix);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->write_all_cbufs) {
for (i = 0; i < 8; i++) {
snprintf(buf, 255, "out vec4 fsout_c%d;\n", i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
} else {
for (i = 0; i < ctx->num_outputs; i++) {
if (!ctx->outputs[i].glsl_predefined_no_emit) {
if ((ctx->prog_type == TGSI_PROCESSOR_VERTEX || ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) && (ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC || ctx->outputs[i].name == TGSI_SEMANTIC_COLOR || ctx->outputs[i].name == TGSI_SEMANTIC_BCOLOR)) {
ctx->num_interps++;
prefix = INTERP_PREFIX;
} else
prefix = "";
/* ugly leave spaces to patch interp in later */
snprintf(buf, 255, "%sout vec4 %s;\n", prefix, ctx->outputs[i].glsl_name);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX) {
snprintf(buf, 255, "uniform vec4 winsys_adjust;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
if (ctx->has_clipvertex) {
snprintf(buf, 255, "vec4 clipv_tmp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_clip_dist || ctx->key->clip_plane_enable) {
if (ctx->key->clip_plane_enable) {
snprintf(buf, 255, "uniform vec4 clipp[8];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->key->gs_present) {
snprintf(buf, 255, "out gl_PerVertex {\n vec4 gl_Position;\n float gl_PointSize;\n float gl_ClipDistance[%d];\n};\n", ctx->num_clip_dist ? ctx->num_clip_dist : 8);
STRCAT_WITH_RET(glsl_hdr, buf);
} else {
snprintf(buf, 255, "out float gl_ClipDistance[%d];\n", ctx->num_clip_dist ? ctx->num_clip_dist : 8);
STRCAT_WITH_RET(glsl_hdr, buf);
}
snprintf(buf, 255, "vec4 clip_dist_temp[2];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
if (ctx->num_in_clip_dist || ctx->key->clip_plane_enable) {
snprintf(buf, 255, "in gl_PerVertex {\n vec4 gl_Position;\n float gl_PointSize; \n float gl_ClipDistance[%d];\n} gl_in[];\n", ctx->num_in_clip_dist ? ctx->num_in_clip_dist : 8);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_clip_dist) {
snprintf(buf, 255, "out float gl_ClipDistance[%d];\n", ctx->num_clip_dist);
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "vec4 clip_dist_temp[2];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->so) {
char outtype[6] = {0};
for (i = 0; i < ctx->so->num_outputs; i++) {
if (!ctx->write_so_outputs[i])
continue;
if (ctx->so->output[i].num_components == 1)
snprintf(outtype, 6, "float");
else
snprintf(outtype, 6, "vec%d", ctx->so->output[i].num_components);
snprintf(buf, 255, "out %s tfout%d;\n", outtype, i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->num_temps) {
snprintf(buf, 255, "vec4 temps[%d];\n", ctx->num_temps);
STRCAT_WITH_RET(glsl_hdr, buf);
}
for (i = 0; i < ctx->num_address; i++) {
snprintf(buf, 255, "int addr%d;\n", i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_consts) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
snprintf(buf, 255, "uniform uvec4 %sconst0[%d];\n", cname, ctx->num_consts);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->key->color_two_side) {
if (ctx->color_in_mask & 1) {
snprintf(buf, 255, "vec4 realcolor0;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->color_in_mask & 2) {
snprintf(buf, 255, "vec4 realcolor1;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->num_ubo) {
for (i = 0; i < ctx->num_ubo; i++) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
snprintf(buf, 255, "uniform %subo%d { vec4 %subo%dcontents[%d]; };\n", cname, ctx->ubo_idx[i], cname, ctx->ubo_idx[i], ctx->ubo_sizes[i]);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
for (i = 0; i < 32; i++) {
int is_shad = 0;
const char *stc;
if ((ctx->samplers_used & (1 << i)) == 0)
continue;
stc = vrend_shader_samplertypeconv(ctx->samplers[i].tgsi_sampler_type, &is_shad);
if (stc) {
const char *sname;
sname = tgsi_proc_to_prefix(ctx->prog_type);
snprintf(buf, 255, "uniform sampler%s %ssamp%d;\n", stc, sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
if (is_shad) {
snprintf(buf, 255, "uniform vec4 %sshadmask%d;\n", sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "uniform vec4 %sshadadd%d;\n", sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
ctx->shadow_samp_mask |= (1 << i);
}
}
}
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT &&
ctx->key->pstipple_tex == true) {
snprintf(buf, 255, "uniform sampler2D pstipple_sampler;\nfloat stip_temp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
return glsl_hdr;
}
static boolean fill_fragment_interpolants(struct dump_ctx *ctx, struct vrend_shader_info *sinfo)
{
int i, index = 0;
for (i = 0; i < ctx->num_inputs; i++) {
if (ctx->inputs[i].glsl_predefined_no_emit)
continue;
if (ctx->inputs[i].name != TGSI_SEMANTIC_GENERIC &&
ctx->inputs[i].name != TGSI_SEMANTIC_COLOR)
continue;
if (index >= ctx->num_interps) {
fprintf(stderr, "mismatch in number of interps %d %d\n", index, ctx->num_interps);
return TRUE;
}
sinfo->interpinfo[index].semantic_name = ctx->inputs[i].name;
sinfo->interpinfo[index].semantic_index = ctx->inputs[i].sid;
sinfo->interpinfo[index].interpolate = ctx->inputs[i].interpolate;
index++;
}
return TRUE;
}
static boolean fill_interpolants(struct dump_ctx *ctx, struct vrend_shader_info *sinfo)
{
boolean ret;
if (!ctx->num_interps)
return TRUE;
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX || ctx->prog_type == TGSI_PROCESSOR_GEOMETRY)
return TRUE;
sinfo->interpinfo = calloc(ctx->num_interps, sizeof(struct vrend_interp_info));
if (!sinfo->interpinfo)
return FALSE;
ret = fill_fragment_interpolants(ctx, sinfo);
if (ret == FALSE)
goto out_fail;
return TRUE;
out_fail:
free(sinfo->interpinfo);
return FALSE;
}
char *vrend_convert_shader(struct vrend_shader_cfg *cfg,
const struct tgsi_token *tokens,
struct vrend_shader_key *key,
struct vrend_shader_info *sinfo)
{
struct dump_ctx ctx;
char *glsl_final = NULL;
boolean bret;
char *glsl_hdr = NULL;
memset(&ctx, 0, sizeof(struct dump_ctx));
ctx.iter.prolog = prolog;
ctx.iter.iterate_instruction = iter_instruction;
ctx.iter.iterate_declaration = iter_declaration;
ctx.iter.iterate_immediate = iter_immediate;
ctx.iter.iterate_property = iter_property;
ctx.iter.epilog = NULL;
ctx.key = key;
ctx.cfg = cfg;
ctx.prog_type = -1;
/* if we are in core profile mode we should use GLSL 1.40 */
if (cfg->use_core_profile && cfg->glsl_version >= 140)
ctx.glsl_ver_required = 140;
if (sinfo->so_info.num_outputs) {
ctx.so = &sinfo->so_info;
ctx.so_names = calloc(sinfo->so_info.num_outputs, sizeof(char *));
if (!ctx.so_names)
goto fail;
} else
ctx.so_names = NULL;
ctx.glsl_main = malloc(4096);
if (!ctx.glsl_main)
goto fail;
ctx.glsl_main[0] = '\0';
bret = tgsi_iterate_shader(tokens, &ctx.iter);
if (bret == FALSE)
goto fail;
glsl_hdr = malloc(1024);
if (!glsl_hdr)
goto fail;
glsl_hdr[0] = '\0';
glsl_hdr = emit_header(&ctx, glsl_hdr);
if (!glsl_hdr)
goto fail;
glsl_hdr = emit_ios(&ctx, glsl_hdr);
if (!glsl_hdr)
goto fail;
glsl_final = malloc(strlen(glsl_hdr) + strlen(ctx.glsl_main) + 1);
if (!glsl_final)
goto fail;
glsl_final[0] = '\0';
bret = fill_interpolants(&ctx, sinfo);
if (bret == FALSE)
goto fail;
strcat(glsl_final, glsl_hdr);
strcat(glsl_final, ctx.glsl_main);
if (vrend_dump_shaders)
fprintf(stderr,"GLSL: %s\n", glsl_final);
free(ctx.glsl_main);
free(glsl_hdr);
sinfo->num_ucp = ctx.key->clip_plane_enable ? 8 : 0;
sinfo->samplers_used_mask = ctx.samplers_used;
sinfo->num_consts = ctx.num_consts;
sinfo->num_ubos = ctx.num_ubo;
sinfo->num_inputs = ctx.num_inputs;
sinfo->num_interps = ctx.num_interps;
sinfo->num_outputs = ctx.num_outputs;
sinfo->shadow_samp_mask = ctx.shadow_samp_mask;
sinfo->glsl_ver = ctx.glsl_ver_required;
sinfo->gs_out_prim = ctx.gs_out_prim;
sinfo->so_names = ctx.so_names;
return glsl_final;
fail:
free(ctx.glsl_main);
free(glsl_final);
free(glsl_hdr);
free(ctx.so_names);
return NULL;
}
static void replace_interp(char *program,
const char *var_name,
const char *pstring)
{
char *ptr;
int mylen = strlen(INTERP_PREFIX) + strlen("out vec4 ");
ptr = strstr(program, var_name);
if (!ptr)
return;
ptr -= mylen;
memcpy(ptr, pstring, strlen(pstring));
}
boolean vrend_patch_vertex_shader_interpolants(char *program,
struct vrend_shader_info *vs_info,
struct vrend_shader_info *fs_info, bool is_gs, bool flatshade)
{
int i;
const char *pstring;
char glsl_name[64];
if (!vs_info || !fs_info)
return TRUE;
if (!fs_info->interpinfo)
return TRUE;
for (i = 0; i < fs_info->num_interps; i++) {
pstring = get_interp_string(fs_info->interpinfo[i].interpolate, flatshade);
if (!pstring)
continue;
switch (fs_info->interpinfo[i].semantic_name) {
case TGSI_SEMANTIC_COLOR:
/* color is a bit trickier */
if (fs_info->glsl_ver < 140) {
if (fs_info->interpinfo[i].semantic_index == 1) {
replace_interp(program, "gl_FrontSecondaryColor", pstring);
replace_interp(program, "gl_BackSecondaryColor", pstring);
} else {
replace_interp(program, "gl_FrontColor", pstring);
replace_interp(program, "gl_BackColor", pstring);
}
} else {
snprintf(glsl_name, 64, "ex_c%d", fs_info->interpinfo[i].semantic_index);
replace_interp(program, glsl_name, pstring);
snprintf(glsl_name, 64, "ex_bc%d", fs_info->interpinfo[i].semantic_index);
replace_interp(program, glsl_name, pstring);
}
break;
case TGSI_SEMANTIC_GENERIC:
snprintf(glsl_name, 64, "%s_g%d", is_gs ? "out" : "ex", fs_info->interpinfo[i].semantic_index);
replace_interp(program, glsl_name, pstring);
break;
}
}
if (vrend_dump_shaders)
fprintf(stderr,"GLSL: post interp: %s\n", program);
return TRUE;
}