You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
virglrenderer/src/vrend_shader.c

5176 lines
199 KiB

/**************************************************************************
*
* Copyright (C) 2014 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_iterate.h"
#include "tgsi/tgsi_scan.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include "vrend_shader.h"
extern int vrend_dump_shaders;
/* start convert of tgsi to glsl */
#define INTERP_PREFIX " "
#define INVARI_PREFIX "invariant"
#define SHADER_REQ_NONE 0
#define SHADER_REQ_SAMPLER_RECT (1 << 0)
#define SHADER_REQ_CUBE_ARRAY (1 << 1)
#define SHADER_REQ_INTS (1 << 2)
#define SHADER_REQ_SAMPLER_MS (1 << 3)
#define SHADER_REQ_INSTANCE_ID (1 << 4)
#define SHADER_REQ_LODQ (1 << 5)
#define SHADER_REQ_TXQ_LEVELS (1 << 6)
#define SHADER_REQ_TG4 (1 << 7)
#define SHADER_REQ_VIEWPORT_IDX (1 << 8)
#define SHADER_REQ_STENCIL_EXPORT (1 << 9)
#define SHADER_REQ_LAYER (1 << 10)
#define SHADER_REQ_SAMPLE_SHADING (1 << 11)
#define SHADER_REQ_GPU_SHADER5 (1 << 12)
#define SHADER_REQ_DERIVATIVE_CONTROL (1 << 13)
#define SHADER_REQ_FP64 (1 << 14)
#define SHADER_REQ_IMAGE_LOAD_STORE (1 << 15)
#define SHADER_REQ_ES31_COMPAT (1 << 16)
#define SHADER_REQ_IMAGE_SIZE (1 << 17)
#define SHADER_REQ_TXQS (1 << 18)
#define SHADER_REQ_FBFETCH (1 << 19)
#define SHADER_REQ_SHADER_CLOCK (1 << 20)
#define SHADER_REQ_PSIZE (1 << 21)
struct vrend_shader_io {
unsigned name;
unsigned gpr;
unsigned done;
int sid;
unsigned interpolate;
int first;
unsigned location;
bool invariant;
bool precise;
bool glsl_predefined_no_emit;
bool glsl_no_index;
bool glsl_gl_block;
bool override_no_wm;
bool is_int;
bool fbfetch_used;
char glsl_name[128];
unsigned stream;
};
struct vrend_shader_sampler {
int tgsi_sampler_type;
enum tgsi_return_type tgsi_sampler_return;
};
struct vrend_shader_table {
uint32_t key;
const char *string;
};
struct vrend_shader_image {
struct tgsi_declaration_image decl;
enum tgsi_return_type image_return;
bool vflag;
};
#define MAX_IMMEDIATE 1024
struct immed {
int type;
union imm {
uint32_t ui;
int32_t i;
float f;
} val[4];
};
struct vrend_temp_range {
int first;
int last;
int array_id;
};
struct vrend_io_range {
int first;
int last;
int array_id;
bool used;
};
struct dump_ctx {
struct tgsi_iterate_context iter;
struct vrend_shader_cfg *cfg;
struct tgsi_shader_info info;
int prog_type;
int size;
char *glsl_main;
uint instno;
uint32_t num_interps;
uint32_t num_inputs;
uint32_t attrib_input_mask;
struct vrend_shader_io inputs[64];
uint32_t num_outputs;
struct vrend_shader_io outputs[64];
uint32_t num_system_values;
struct vrend_shader_io system_values[32];
struct vrend_io_range generic_input_range;
struct vrend_io_range patch_input_range;
struct vrend_io_range generic_output_range;
struct vrend_io_range patch_output_range;
uint32_t num_temp_ranges;
struct vrend_temp_range *temp_ranges;
struct vrend_shader_sampler samplers[32];
uint32_t samplers_used;
uint32_t ssbo_used_mask;
uint32_t ssbo_atomic_mask;
uint32_t ssbo_array_base;
uint32_t ssbo_atomic_array_base;
uint32_t ssbo_integer_mask;
struct vrend_shader_image images[32];
uint32_t images_used_mask;
struct vrend_array *image_arrays;
uint32_t num_image_arrays;
struct vrend_array *sampler_arrays;
uint32_t num_sampler_arrays;
int num_consts;
int num_imm;
struct immed imm[MAX_IMMEDIATE];
unsigned fragcoord_input;
uint32_t req_local_mem;
bool integer_memory;
uint32_t num_ubo;
uint32_t ubo_base;
int ubo_idx[32];
int ubo_sizes[32];
uint32_t num_address;
uint32_t shader_req_bits;
struct pipe_stream_output_info *so;
char **so_names;
bool write_so_outputs[PIPE_MAX_SO_OUTPUTS];
bool uses_sampler_buf;
bool write_all_cbufs;
uint32_t shadow_samp_mask;
int fs_coord_origin, fs_pixel_center;
int gs_in_prim, gs_out_prim, gs_max_out_verts;
int gs_num_invocations;
struct vrend_shader_key *key;
int indent_level;
int num_in_clip_dist;
int num_clip_dist;
int glsl_ver_required;
int color_in_mask;
/* only used when cull is enabled */
uint8_t num_cull_dist_prop, num_clip_dist_prop;
bool front_face_emitted;
bool has_clipvertex;
bool has_clipvertex_so;
bool vs_has_pervertex;
bool write_mul_utemp;
bool write_mul_itemp;
bool has_sample_input;
bool early_depth_stencil;
bool has_file_memory;
int tcs_vertices_out;
int tes_prim_mode;
int tes_spacing;
int tes_vertex_order;
int tes_point_mode;
uint16_t local_cs_block_size[3];
};
static const struct vrend_shader_table shader_req_table[] = {
{ SHADER_REQ_SAMPLER_RECT, "GL_ARB_texture_rectangle" },
{ SHADER_REQ_CUBE_ARRAY, "GL_ARB_texture_cube_map_array" },
{ SHADER_REQ_INTS, "GL_ARB_shader_bit_encoding" },
{ SHADER_REQ_SAMPLER_MS, "GL_ARB_texture_multisample" },
{ SHADER_REQ_INSTANCE_ID, "GL_ARB_draw_instanced" },
{ SHADER_REQ_LODQ, "GL_ARB_texture_query_lod" },
{ SHADER_REQ_TXQ_LEVELS, "GL_ARB_texture_query_levels" },
{ SHADER_REQ_TG4, "GL_ARB_texture_gather" },
{ SHADER_REQ_VIEWPORT_IDX, "GL_ARB_viewport_array" },
{ SHADER_REQ_STENCIL_EXPORT, "GL_ARB_shader_stencil_export" },
{ SHADER_REQ_LAYER, "GL_ARB_fragment_layer_viewport" },
{ SHADER_REQ_SAMPLE_SHADING, "GL_ARB_sample_shading" },
{ SHADER_REQ_GPU_SHADER5, "GL_ARB_gpu_shader5" },
{ SHADER_REQ_DERIVATIVE_CONTROL, "GL_ARB_derivative_control" },
{ SHADER_REQ_FP64, "GL_ARB_gpu_shader_fp64" },
{ SHADER_REQ_IMAGE_LOAD_STORE, "GL_ARB_shader_image_load_store" },
{ SHADER_REQ_ES31_COMPAT, "GL_ARB_ES3_1_compatibility" },
{ SHADER_REQ_IMAGE_SIZE, "GL_ARB_shader_image_size" },
{ SHADER_REQ_TXQS, "GL_ARB_shader_texture_image_samples" },
{ SHADER_REQ_FBFETCH, "GL_EXT_shader_framebuffer_fetch" },
{ SHADER_REQ_SHADER_CLOCK, "GL_ARB_shader_clock" },
};
enum vrend_type_qualifier {
TYPE_CONVERSION_NONE = 0,
FLOAT = 1,
VEC2 = 2,
VEC3 = 3,
VEC4 = 4,
INT = 5,
IVEC2 = 6,
IVEC3 = 7,
IVEC4 = 8,
UINT = 9,
UVEC2 = 10,
UVEC3 = 11,
UVEC4 = 12,
FLOAT_BITS_TO_UINT = 13,
UINT_BITS_TO_FLOAT = 14,
FLOAT_BITS_TO_INT = 15,
INT_BITS_TO_FLOAT = 16,
DOUBLE = 17,
DVEC2 = 18,
};
struct dest_info {
enum vrend_type_qualifier dtypeprefix;
enum vrend_type_qualifier dstconv;
enum vrend_type_qualifier udstconv;
enum vrend_type_qualifier idstconv;
bool dst_override_no_wm[2];
};
struct source_info {
enum vrend_type_qualifier svec4;
uint32_t sreg_index;
bool tg4_has_component;
bool override_no_wm[3];
bool override_no_cast[3];
};
static const struct vrend_shader_table conversion_table[] =
{
{TYPE_CONVERSION_NONE, ""},
{FLOAT, "float"},
{VEC2, "vec2"},
{VEC3, "vec3"},
{VEC4, "vec4"},
{INT, "int"},
{IVEC2, "ivec2"},
{IVEC3, "ivec3"},
{IVEC4, "ivec4"},
{UINT, "uint"},
{UVEC2, "uvec2"},
{UVEC3, "uvec3"},
{UVEC4, "uvec4"},
{FLOAT_BITS_TO_UINT, "floatBitsToUint"},
{UINT_BITS_TO_FLOAT, "uintBitsToFloat"},
{FLOAT_BITS_TO_INT, "floatBitsToInt"},
{INT_BITS_TO_FLOAT, "intBitsToFloat"},
{DOUBLE, "double"},
{DVEC2, "dvec2"},
};
static inline const char *get_string(enum vrend_type_qualifier key)
{
if (key >= ARRAY_SIZE(conversion_table)) {
printf("Unable to find the correct conversion\n");
return conversion_table[TYPE_CONVERSION_NONE].string;
}
return conversion_table[key].string;
}
static inline const char *get_wm_string(unsigned wm)
{
switch(wm) {
case TGSI_WRITEMASK_NONE:
return "";
case TGSI_WRITEMASK_X:
return ".x";
case TGSI_WRITEMASK_XY:
return ".xy";
case TGSI_WRITEMASK_XYZ:
return ".xyz";
case TGSI_WRITEMASK_W:
return ".w";
default:
printf("Unable to unknown writemask\n");
return "";
}
}
const char *get_internalformat_string(int virgl_format, enum tgsi_return_type *stype);
static inline const char *tgsi_proc_to_prefix(int shader_type)
{
switch (shader_type) {
case TGSI_PROCESSOR_VERTEX: return "vs";
case TGSI_PROCESSOR_FRAGMENT: return "fs";
case TGSI_PROCESSOR_GEOMETRY: return "gs";
case TGSI_PROCESSOR_TESS_CTRL: return "tc";
case TGSI_PROCESSOR_TESS_EVAL: return "te";
case TGSI_PROCESSOR_COMPUTE: return "cs";
default:
return NULL;
};
}
static inline const char *prim_to_name(int prim)
{
switch (prim) {
case PIPE_PRIM_POINTS: return "points";
case PIPE_PRIM_LINES: return "lines";
case PIPE_PRIM_LINE_STRIP: return "line_strip";
case PIPE_PRIM_LINES_ADJACENCY: return "lines_adjacency";
case PIPE_PRIM_TRIANGLES: return "triangles";
case PIPE_PRIM_TRIANGLE_STRIP: return "triangle_strip";
case PIPE_PRIM_TRIANGLES_ADJACENCY: return "triangles_adjacency";
case PIPE_PRIM_QUADS: return "quads";
default: return "UNKNOWN";
};
}
static inline const char *prim_to_tes_name(int prim)
{
switch (prim) {
case PIPE_PRIM_QUADS: return "quads";
case PIPE_PRIM_TRIANGLES: return "triangles";
case PIPE_PRIM_LINES: return "isolines";
default: return "UNKNOWN";
}
}
static const char *get_spacing_string(int spacing)
{
switch (spacing) {
case PIPE_TESS_SPACING_FRACTIONAL_ODD:
return "fractional_odd_spacing";
case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
return "fractional_even_spacing";
case PIPE_TESS_SPACING_EQUAL:
default:
return "equal_spacing";
}
}
static inline int gs_input_prim_to_size(int prim)
{
switch (prim) {
case PIPE_PRIM_POINTS: return 1;
case PIPE_PRIM_LINES: return 2;
case PIPE_PRIM_LINES_ADJACENCY: return 4;
case PIPE_PRIM_TRIANGLES: return 3;
case PIPE_PRIM_TRIANGLES_ADJACENCY: return 6;
default: return -1;
};
}
static inline bool fs_emit_layout(struct dump_ctx *ctx)
{
if (ctx->fs_pixel_center)
return true;
/* if coord origin is 0 and invert is 0 - emit origin_upper_left,
if coord_origin is 0 and invert is 1 - emit nothing (lower)
if coord origin is 1 and invert is 0 - emit nothing (lower)
if coord_origin is 1 and invert is 1 - emit origin upper left */
if (!(ctx->fs_coord_origin ^ ctx->key->invert_fs_origin))
return true;
return false;
}
static const char *get_stage_input_name_prefix(struct dump_ctx *ctx, int processor)
{
const char *name_prefix;
switch (processor) {
case TGSI_PROCESSOR_FRAGMENT:
if (ctx->key->gs_present)
name_prefix = "gso";
else if (ctx->key->tes_present)
name_prefix = "teo";
else
name_prefix = "vso";
break;
case TGSI_PROCESSOR_GEOMETRY:
if (ctx->key->tes_present)
name_prefix = "teo";
else
name_prefix = "vso";
break;
case TGSI_PROCESSOR_TESS_EVAL:
if (ctx->key->tcs_present)
name_prefix = "tco";
else
name_prefix = "vso";
break;
case TGSI_PROCESSOR_TESS_CTRL:
name_prefix = "vso";
break;
case TGSI_PROCESSOR_VERTEX:
default:
name_prefix = "in";
break;
}
return name_prefix;
}
static const char *get_stage_output_name_prefix(int processor)
{
const char *name_prefix;
switch (processor) {
case TGSI_PROCESSOR_FRAGMENT:
name_prefix = "fsout";
break;
case TGSI_PROCESSOR_GEOMETRY:
name_prefix = "gso";
break;
case TGSI_PROCESSOR_VERTEX:
name_prefix = "vso";
break;
case TGSI_PROCESSOR_TESS_CTRL:
name_prefix = "tco";
break;
case TGSI_PROCESSOR_TESS_EVAL:
name_prefix = "teo";
break;
default:
name_prefix = "out";
break;
}
return name_prefix;
}
static void require_glsl_ver(struct dump_ctx *ctx, int glsl_ver)
{
if (glsl_ver > ctx->glsl_ver_required)
ctx->glsl_ver_required = glsl_ver;
}
static char *strcat_realloc(char *str, const char *catstr)
{
char *new = realloc(str, strlen(str) + strlen(catstr) + 1);
if (!new) {
free(str);
return NULL;
}
strcat(new, catstr);
return new;
}
static char *add_str_to_glsl_main(struct dump_ctx *ctx, const char *buf)
{
ctx->glsl_main = strcat_realloc(ctx->glsl_main, buf);
return ctx->glsl_main;
}
static int allocate_temp_range(struct dump_ctx *ctx, int first, int last,
int array_id)
{
int idx = ctx->num_temp_ranges;
ctx->temp_ranges = realloc(ctx->temp_ranges, sizeof(struct vrend_temp_range) * (idx + 1));
if (!ctx->temp_ranges)
return ENOMEM;
ctx->temp_ranges[idx].first = first;
ctx->temp_ranges[idx].last = last;
ctx->temp_ranges[idx].array_id = array_id;
ctx->num_temp_ranges++;
return 0;
}
static struct vrend_temp_range *find_temp_range(struct dump_ctx *ctx, int index)
{
uint32_t i;
for (i = 0; i < ctx->num_temp_ranges; i++) {
if (index >= ctx->temp_ranges[i].first &&
index <= ctx->temp_ranges[i].last)
return &ctx->temp_ranges[i];
}
return NULL;
}
static int add_images(struct dump_ctx *ctx, int first, int last,
struct tgsi_declaration_image *img_decl)
{
int i;
for (i = first; i <= last; i++) {
ctx->images[i].decl = *img_decl;
ctx->images[i].vflag = false;
ctx->images_used_mask |= (1 << i);
if (ctx->images[i].decl.Resource == TGSI_TEXTURE_CUBE_ARRAY)
ctx->shader_req_bits |= SHADER_REQ_CUBE_ARRAY;
else if (ctx->images[i].decl.Resource == TGSI_TEXTURE_2D_MSAA ||
ctx->images[i].decl.Resource == TGSI_TEXTURE_2D_ARRAY_MSAA)
ctx->shader_req_bits |= SHADER_REQ_SAMPLER_MS;
else if (ctx->images[i].decl.Resource == TGSI_TEXTURE_BUFFER)
ctx->uses_sampler_buf = true;
else if (ctx->images[i].decl.Resource == TGSI_TEXTURE_RECT)
ctx->shader_req_bits |= SHADER_REQ_SAMPLER_RECT;
}
if (ctx->info.indirect_files & (1 << TGSI_FILE_IMAGE)) {
if (ctx->num_image_arrays) {
struct vrend_array *last_array = &ctx->image_arrays[ctx->num_image_arrays - 1];
/*
* If this set of images is consecutive to the last array,
* and has compatible return and decls, then increase the array size.
*/
if ((last_array->first + last_array->array_size == first) &&
!memcmp(&ctx->images[last_array->first].decl, &ctx->images[first].decl, sizeof(ctx->images[first].decl)) &&
ctx->images[last_array->first].image_return == ctx->images[first].image_return) {
last_array->array_size += last - first + 1;
return 0;
}
}
/* allocate a new image array for this range of images */
ctx->num_image_arrays++;
ctx->image_arrays = realloc(ctx->image_arrays, sizeof(struct vrend_array) * ctx->num_image_arrays);
if (!ctx->image_arrays)
return -1;
ctx->image_arrays[ctx->num_image_arrays - 1].first = first;
ctx->image_arrays[ctx->num_image_arrays - 1].array_size = last - first + 1;
}
return 0;
}
static int add_sampler_array(struct dump_ctx *ctx, int first, int last)
{
int idx = ctx->num_sampler_arrays;
ctx->num_sampler_arrays++;
ctx->sampler_arrays = realloc(ctx->sampler_arrays, sizeof(struct vrend_array) * ctx->num_sampler_arrays);
if (!ctx->sampler_arrays)
return -1;
ctx->sampler_arrays[idx].first = first;
ctx->sampler_arrays[idx].array_size = last - first + 1;
return 0;
}
static int lookup_sampler_array(struct dump_ctx *ctx, int index)
{
uint32_t i;
for (i = 0; i < ctx->num_sampler_arrays; i++) {
int last = ctx->sampler_arrays[i].first + ctx->sampler_arrays[i].array_size - 1;
if (index >= ctx->sampler_arrays[i].first &&
index <= last) {
return ctx->sampler_arrays[i].first;
}
}
return -1;
}
int shader_lookup_sampler_array(struct vrend_shader_info *sinfo, int index)
{
int i;
for (i = 0; i < sinfo->num_sampler_arrays; i++) {
int last = sinfo->sampler_arrays[i].first + sinfo->sampler_arrays[i].array_size - 1;
if (index >= sinfo->sampler_arrays[i].first &&
index <= last) {
return sinfo->sampler_arrays[i].first;
}
}
return -1;
}
static int add_samplers(struct dump_ctx *ctx, int first, int last, int sview_type, enum tgsi_return_type sview_rtype)
{
if (sview_rtype == TGSI_RETURN_TYPE_SINT ||
sview_rtype == TGSI_RETURN_TYPE_UINT)
ctx->shader_req_bits |= SHADER_REQ_INTS;
for (int i = first; i <= last; i++) {
ctx->samplers[i].tgsi_sampler_return = sview_rtype;
ctx->samplers[i].tgsi_sampler_type = sview_type;
}
if (ctx->info.indirect_files & (1 << TGSI_FILE_SAMPLER)) {
if (ctx->num_sampler_arrays) {
struct vrend_array *last_array = &ctx->sampler_arrays[ctx->num_sampler_arrays - 1];
if ((last_array->first + last_array->array_size == first) &&
ctx->samplers[last_array->first].tgsi_sampler_type == sview_type &&
ctx->samplers[last_array->first].tgsi_sampler_return == sview_rtype) {
last_array->array_size += last - first + 1;
return 0;
}
}
/* allocate a new image array for this range of images */
return add_sampler_array(ctx, first, last);
}
return 0;
}
static bool ctx_indirect_inputs(struct dump_ctx *ctx)
{
if (ctx->info.indirect_files & (1 << TGSI_FILE_INPUT))
return true;
if (ctx->key->num_indirect_generic_inputs || ctx->key->num_indirect_patch_inputs)
return true;
return false;
}
static bool ctx_indirect_outputs(struct dump_ctx *ctx)
{
if (ctx->info.indirect_files & (1 << TGSI_FILE_OUTPUT))
return true;
if (ctx->key->num_indirect_generic_outputs || ctx->key->num_indirect_patch_outputs)
return true;
return false;
}
static int lookup_image_array(struct dump_ctx *ctx, int index)
{
uint32_t i;
for (i = 0; i < ctx->num_image_arrays; i++) {
if (index >= ctx->image_arrays[i].first &&
index <= ctx->image_arrays[i].first + ctx->image_arrays[i].array_size - 1) {
return ctx->image_arrays[i].first;
}
}
return -1;
}
static boolean
iter_declaration(struct tgsi_iterate_context *iter,
struct tgsi_full_declaration *decl )
{
struct dump_ctx *ctx = (struct dump_ctx *)iter;
int i;
int color_offset = 0;
const char *name_prefix = "";
bool add_two_side = false;
bool indirect = false;
switch (decl->Declaration.File) {
case TGSI_FILE_INPUT:
for (uint32_t j = 0; j < ctx->num_inputs; j++) {
if (ctx->inputs[j].name == decl->Semantic.Name &&
ctx->inputs[j].sid == decl->Semantic.Index &&
ctx->inputs[j].first == decl->Range.First)
return TRUE;
}
i = ctx->num_inputs++;
indirect = ctx_indirect_inputs(ctx);
if (ctx->num_inputs > ARRAY_SIZE(ctx->inputs)) {
fprintf(stderr, "Number of inputs exceeded, max is %lu\n", ARRAY_SIZE(ctx->inputs));
return FALSE;
}
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
ctx->attrib_input_mask |= (1 << decl->Range.First);
}
ctx->inputs[i].name = decl->Semantic.Name;
ctx->inputs[i].sid = decl->Semantic.Index;
ctx->inputs[i].interpolate = decl->Interp.Interpolate;
ctx->inputs[i].location = decl->Interp.Location;
ctx->inputs[i].first = decl->Range.First;
ctx->inputs[i].glsl_predefined_no_emit = false;
ctx->inputs[i].glsl_no_index = false;
ctx->inputs[i].override_no_wm = false;
ctx->inputs[i].glsl_gl_block = false;
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT &&
decl->Interp.Location == TGSI_INTERPOLATE_LOC_SAMPLE) {
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
ctx->has_sample_input = true;
}
switch (ctx->inputs[i].name) {
case TGSI_SEMANTIC_COLOR:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->glsl_ver_required < 140) {
if (decl->Semantic.Index == 0)
name_prefix = "gl_Color";
else if (decl->Semantic.Index == 1)
name_prefix = "gl_SecondaryColor";
else
fprintf(stderr, "got illegal color semantic index %d\n", decl->Semantic.Index);
ctx->inputs[i].glsl_no_index = true;
} else {
if (ctx->key->color_two_side) {
int j = ctx->num_inputs++;
if (ctx->num_inputs > ARRAY_SIZE(ctx->inputs)) {
fprintf(stderr, "Number of inputs exceeded, max is %lu\n", ARRAY_SIZE(ctx->inputs));
return FALSE;
}
ctx->inputs[j].name = TGSI_SEMANTIC_BCOLOR;
ctx->inputs[j].sid = decl->Semantic.Index;
ctx->inputs[j].interpolate = decl->Interp.Interpolate;
ctx->inputs[j].location = decl->Interp.Location;
ctx->inputs[j].first = decl->Range.First;
ctx->inputs[j].glsl_predefined_no_emit = false;
ctx->inputs[j].glsl_no_index = false;
ctx->inputs[j].override_no_wm = false;
ctx->color_in_mask |= (1 << decl->Semantic.Index);
if (ctx->front_face_emitted == false) {
int k = ctx->num_inputs++;
if (ctx->num_inputs > ARRAY_SIZE(ctx->inputs)) {
fprintf(stderr, "Number of inputs exceeded, max is %lu\n", ARRAY_SIZE(ctx->inputs));
return FALSE;
}
ctx->inputs[k].name = TGSI_SEMANTIC_FACE;
ctx->inputs[k].sid = 0;
ctx->inputs[k].interpolate = 0;
ctx->inputs[k].location = TGSI_INTERPOLATE_LOC_CENTER;
ctx->inputs[k].first = 0;
ctx->inputs[k].override_no_wm = false;
ctx->inputs[k].glsl_predefined_no_emit = true;
ctx->inputs[k].glsl_no_index = true;
}
add_two_side = true;
}
name_prefix = "ex";
}
break;
}
/* fallthrough */
case TGSI_SEMANTIC_PRIMID:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
name_prefix = "gl_PrimitiveIDIn";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->inputs[i].override_no_wm = true;
ctx->shader_req_bits |= SHADER_REQ_INTS;
break;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_PrimitiveID";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
require_glsl_ver(ctx, 150);
break;
}
/* fallthrough */
case TGSI_SEMANTIC_VIEWPORT_INDEX:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->inputs[i].is_int = true;
ctx->inputs[i].override_no_wm = true;
name_prefix = "gl_ViewportIndex";
if (ctx->glsl_ver_required >= 140)
ctx->shader_req_bits |= SHADER_REQ_LAYER;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_LAYER:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_Layer";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->inputs[i].is_int = true;
ctx->inputs[i].override_no_wm = true;
ctx->shader_req_bits |= SHADER_REQ_LAYER;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_PSIZE:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_EVAL) {
name_prefix = "gl_PointSize";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->inputs[i].override_no_wm = true;
ctx->inputs[i].glsl_gl_block = true;
ctx->shader_req_bits |= SHADER_REQ_PSIZE;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_CLIPDIST:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_EVAL) {
name_prefix = "gl_ClipDistance";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->inputs[i].glsl_gl_block = true;
ctx->num_in_clip_dist += 4;
break;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_ClipDistance";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->num_in_clip_dist += 4;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_POSITION:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_EVAL) {
name_prefix = "gl_Position";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->inputs[i].glsl_gl_block = true;
break;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_FragCoord";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_FACE:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->front_face_emitted) {
ctx->num_inputs--;
return TRUE;
}
name_prefix = "gl_FrontFacing";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
ctx->front_face_emitted = true;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_PATCH:
if (indirect && ctx->inputs[i].name == TGSI_SEMANTIC_PATCH) {
ctx->inputs[i].glsl_predefined_no_emit = true;
if (ctx->inputs[i].sid < ctx->patch_input_range.first || ctx->patch_input_range.used == false) {
ctx->patch_input_range.first = ctx->inputs[i].sid;
ctx->patch_input_range.array_id = i;
ctx->patch_input_range.used = true;
}
if (ctx->inputs[i].sid > ctx->patch_input_range.last)
ctx->patch_input_range.last = ctx->inputs[i].sid;
}
/* fallthrough */
case TGSI_SEMANTIC_GENERIC:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->key->coord_replace & (1 << ctx->inputs[i].sid)) {
if (ctx->cfg->use_gles)
name_prefix = "vec4(gl_PointCoord.x, mix(1.0 - gl_PointCoord.y, gl_PointCoord.y, clamp(winsys_adjust_y, 0.0, 1.0)), 0.0, 1.0)";
else
name_prefix = "vec4(gl_PointCoord, 0.0, 1.0)";
ctx->inputs[i].glsl_predefined_no_emit = true;
ctx->inputs[i].glsl_no_index = true;
break;
}
}
if (indirect && ctx->inputs[i].name == TGSI_SEMANTIC_GENERIC) {
ctx->inputs[i].glsl_predefined_no_emit = true;
if (ctx->inputs[i].sid < ctx->generic_input_range.first || ctx->generic_input_range.used == false) {
ctx->generic_input_range.first = ctx->inputs[i].sid;
ctx->generic_input_range.array_id = i;
ctx->generic_input_range.used = true;
}
if (ctx->inputs[i].sid > ctx->generic_input_range.last)
ctx->generic_input_range.last = ctx->inputs[i].sid;
}
/* fallthrough */
default:
name_prefix = get_stage_input_name_prefix(ctx, iter->processor.Processor);
break;
}
if (ctx->inputs[i].glsl_no_index)
snprintf(ctx->inputs[i].glsl_name, 128, "%s", name_prefix);
else {
if (ctx->inputs[i].name == TGSI_SEMANTIC_FOG)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_f%d", name_prefix, ctx->inputs[i].sid);
else if (ctx->inputs[i].name == TGSI_SEMANTIC_COLOR)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_c%d", name_prefix, ctx->inputs[i].sid);
else if (ctx->inputs[i].name == TGSI_SEMANTIC_GENERIC)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_g%d", name_prefix, ctx->inputs[i].sid);
else if (ctx->inputs[i].name == TGSI_SEMANTIC_PATCH)
snprintf(ctx->inputs[i].glsl_name, 64, "%s_p%d", name_prefix, ctx->inputs[i].sid);
else
snprintf(ctx->inputs[i].glsl_name, 64, "%s_%d", name_prefix, ctx->inputs[i].first);
}
if (add_two_side) {
snprintf(ctx->inputs[i + 1].glsl_name, 64, "%s_bc%d", name_prefix, ctx->inputs[i + 1].sid);
if (!ctx->front_face_emitted) {
snprintf(ctx->inputs[i + 2].glsl_name, 64, "%s", "gl_FrontFacing");
ctx->front_face_emitted = true;
}
}
break;
case TGSI_FILE_OUTPUT:
for (uint32_t j = 0; j < ctx->num_outputs; j++) {
if (ctx->outputs[j].name == decl->Semantic.Name &&
ctx->outputs[j].sid == decl->Semantic.Index &&
ctx->outputs[j].first == decl->Range.First)
return TRUE;
}
i = ctx->num_outputs++;
indirect = ctx_indirect_outputs(ctx);
if (ctx->num_outputs > ARRAY_SIZE(ctx->outputs)) {
fprintf(stderr, "Number of outputs exceeded, max is %lu\n", ARRAY_SIZE(ctx->outputs));
return FALSE;
}
ctx->outputs[i].name = decl->Semantic.Name;
ctx->outputs[i].sid = decl->Semantic.Index;
ctx->outputs[i].interpolate = decl->Interp.Interpolate;
ctx->outputs[i].invariant = decl->Declaration.Invariant;
ctx->outputs[i].precise = false;
ctx->outputs[i].first = decl->Range.First;
ctx->outputs[i].glsl_predefined_no_emit = false;
ctx->outputs[i].glsl_no_index = false;
ctx->outputs[i].override_no_wm = false;
ctx->outputs[i].is_int = false;
ctx->outputs[i].fbfetch_used = false;
switch (ctx->outputs[i].name) {
case TGSI_SEMANTIC_POSITION:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX ||
iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_EVAL) {
if (ctx->outputs[i].first > 0)
fprintf(stderr,"Illegal position input\n");
name_prefix = "gl_Position";
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
if (iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL)
ctx->outputs[i].glsl_gl_block = true;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_FragDepth";
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
}
break;
case TGSI_SEMANTIC_STENCIL:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
name_prefix = "gl_FragStencilRefARB";
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
ctx->outputs[i].is_int = true;
ctx->shader_req_bits |= (SHADER_REQ_INTS | SHADER_REQ_STENCIL_EXPORT);
}
break;
case TGSI_SEMANTIC_CLIPDIST:
name_prefix = "gl_ClipDistance";
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->num_clip_dist += 4;
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX &&
(ctx->key->gs_present || ctx->key->tcs_present))
require_glsl_ver(ctx, 150);
if (iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL)
ctx->outputs[i].glsl_gl_block = true;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
name_prefix = "gl_ClipVertex";
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
if (ctx->glsl_ver_required >= 140)
ctx->has_clipvertex = true;
break;
case TGSI_SEMANTIC_SAMPLEMASK:
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
ctx->outputs[i].is_int = true;
ctx->shader_req_bits |= (SHADER_REQ_INTS | SHADER_REQ_SAMPLE_SHADING);
name_prefix = "gl_SampleMask";
break;
}
break;
case TGSI_SEMANTIC_COLOR:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
if (ctx->glsl_ver_required < 140) {
ctx->outputs[i].glsl_no_index = true;
if (ctx->outputs[i].sid == 0)
name_prefix = "gl_FrontColor";
else if (ctx->outputs[i].sid == 1)
name_prefix = "gl_FrontSecondaryColor";
} else
name_prefix = "ex";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_BCOLOR:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
if (ctx->glsl_ver_required < 140) {
ctx->outputs[i].glsl_no_index = true;
if (ctx->outputs[i].sid == 0)
name_prefix = "gl_BackColor";
else if (ctx->outputs[i].sid == 1)
name_prefix = "gl_BackSecondaryColor";
break;
} else
name_prefix = "ex";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_PSIZE:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX ||
iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL ||
iter->processor.Processor == TGSI_PROCESSOR_TESS_EVAL) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
ctx->shader_req_bits |= SHADER_REQ_PSIZE;
name_prefix = "gl_PointSize";
if (iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL)
ctx->outputs[i].glsl_gl_block = true;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_LAYER:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
ctx->outputs[i].is_int = true;
name_prefix = "gl_Layer";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_PRIMID:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
ctx->outputs[i].is_int = true;
name_prefix = "gl_PrimitiveID";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_VIEWPORT_INDEX:
if (iter->processor.Processor == TGSI_PROCESSOR_GEOMETRY) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
ctx->outputs[i].is_int = true;
name_prefix = "gl_ViewportIndex";
if (ctx->glsl_ver_required >= 140)
ctx->shader_req_bits |= SHADER_REQ_VIEWPORT_IDX;
break;
}
/* fallthrough */
case TGSI_SEMANTIC_TESSOUTER:
if (iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
name_prefix = "gl_TessLevelOuter";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_TESSINNER:
if (iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL) {
ctx->outputs[i].glsl_predefined_no_emit = true;
ctx->outputs[i].glsl_no_index = true;
ctx->outputs[i].override_no_wm = true;
name_prefix = "gl_TessLevelInner";
break;
}
/* fallthrough */
case TGSI_SEMANTIC_GENERIC:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX)
if (ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC)
color_offset = -1;
if (indirect && ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC) {
ctx->outputs[i].glsl_predefined_no_emit = true;
require_glsl_ver(ctx, 150);
if (ctx->outputs[i].sid < ctx->generic_output_range.first || ctx->generic_output_range.used == false) {
ctx->generic_output_range.array_id = i;
ctx->generic_output_range.first = ctx->outputs[i].sid;
ctx->generic_output_range.used = true;
}
if (ctx->outputs[i].sid > ctx->generic_output_range.last)
ctx->generic_output_range.last = ctx->outputs[i].sid;
}
/* fallthrough */
case TGSI_SEMANTIC_PATCH:
if (indirect && ctx->outputs[i].name == TGSI_SEMANTIC_PATCH) {
ctx->outputs[i].glsl_predefined_no_emit = true;
require_glsl_ver(ctx, 150);
if (ctx->outputs[i].sid < ctx->patch_output_range.first || ctx->patch_output_range.used == false) {
ctx->patch_output_range.array_id = i;
ctx->patch_output_range.first = ctx->outputs[i].sid;
ctx->patch_output_range.used = true;
}
if (ctx->outputs[i].sid > ctx->patch_output_range.last)
ctx->patch_output_range.last = ctx->outputs[i].sid;
}
/* fallthrough */
default:
name_prefix = get_stage_output_name_prefix(iter->processor.Processor);
break;
}
if (ctx->outputs[i].glsl_no_index)
snprintf(ctx->outputs[i].glsl_name, 64, "%s", name_prefix);
else {
if (ctx->outputs[i].name == TGSI_SEMANTIC_FOG)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_f%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_COLOR)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_c%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_BCOLOR)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_bc%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_PATCH)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_p%d", name_prefix, ctx->outputs[i].sid);
else if (ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC)
snprintf(ctx->outputs[i].glsl_name, 64, "%s_g%d", name_prefix, ctx->outputs[i].sid);
else
snprintf(ctx->outputs[i].glsl_name, 64, "%s_%d", name_prefix, ctx->outputs[i].first + color_offset);
}
break;
case TGSI_FILE_TEMPORARY:
if (allocate_temp_range(ctx, decl->Range.First, decl->Range.Last,
decl->Array.ArrayID))
return FALSE;
break;
case TGSI_FILE_SAMPLER:
ctx->samplers_used |= (1 << decl->Range.Last);
break;
case TGSI_FILE_SAMPLER_VIEW: {
int ret;
if (decl->Range.Last >= ARRAY_SIZE(ctx->samplers)) {
fprintf(stderr, "Sampler view exceeded, max is %lu\n", ARRAY_SIZE(ctx->samplers));
return FALSE;
}
ret = add_samplers(ctx, decl->Range.First, decl->Range.Last, decl->SamplerView.Resource, decl->SamplerView.ReturnTypeX);
if (ret == -1)
return FALSE;
break;
}
case TGSI_FILE_IMAGE: {
int ret;
ctx->shader_req_bits |= SHADER_REQ_IMAGE_LOAD_STORE;
if (decl->Range.Last >= ARRAY_SIZE(ctx->images)) {
fprintf(stderr, "Image view exceeded, max is %lu\n", ARRAY_SIZE(ctx->images));
return FALSE;
}
ret = add_images(ctx, decl->Range.First, decl->Range.Last, &decl->Image);
if (ret == -1)
return FALSE;
break;
}
case TGSI_FILE_BUFFER:
if (decl->Range.First >= 32) {
fprintf(stderr, "Buffer view exceeded, max is 32\n");
return FALSE;
}
ctx->ssbo_used_mask |= (1 << decl->Range.First);
if (decl->Declaration.Atomic) {
if (decl->Range.First < ctx->ssbo_atomic_array_base)
ctx->ssbo_atomic_array_base = decl->Range.First;
ctx->ssbo_atomic_mask |= (1 << decl->Range.First);
} else {
if (decl->Range.First < ctx->ssbo_array_base)
ctx->ssbo_array_base = decl->Range.First;
}
break;
case TGSI_FILE_CONSTANT:
if (decl->Declaration.Dimension && decl->Dim.Index2D != 0) {
if (ctx->num_ubo >= ARRAY_SIZE(ctx->ubo_idx)) {
fprintf(stderr, "Number of uniforms exceeded, max is %lu\n", ARRAY_SIZE(ctx->ubo_idx));
return FALSE;
}
ctx->ubo_idx[ctx->num_ubo] = decl->Dim.Index2D;
ctx->ubo_sizes[ctx->num_ubo] = decl->Range.Last + 1;
ctx->num_ubo++;
} else {
/* if we have a normal single const set then ubo base should be 1 */
ctx->ubo_base = 1;
if (decl->Range.Last) {
if (decl->Range.Last + 1 > ctx->num_consts)
ctx->num_consts = decl->Range.Last + 1;
} else
ctx->num_consts++;
}
break;
case TGSI_FILE_ADDRESS:
ctx->num_address = decl->Range.Last + 1;
break;
case TGSI_FILE_SYSTEM_VALUE:
i = ctx->num_system_values++;
if (ctx->num_system_values > ARRAY_SIZE(ctx->system_values)) {
fprintf(stderr, "Number of system values exceeded, max is %lu\n", ARRAY_SIZE(ctx->system_values));
return FALSE;
}
ctx->system_values[i].name = decl->Semantic.Name;
ctx->system_values[i].sid = decl->Semantic.Index;
ctx->system_values[i].glsl_predefined_no_emit = true;
ctx->system_values[i].glsl_no_index = true;
ctx->system_values[i].override_no_wm = true;
ctx->system_values[i].first = decl->Range.First;
if (decl->Semantic.Name == TGSI_SEMANTIC_INSTANCEID) {
name_prefix = "gl_InstanceID";
ctx->shader_req_bits |= SHADER_REQ_INSTANCE_ID | SHADER_REQ_INTS;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_VERTEXID) {
name_prefix = "gl_VertexID";
ctx->shader_req_bits |= SHADER_REQ_INTS;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_HELPER_INVOCATION) {
name_prefix = "gl_HelperInvocation";
ctx->shader_req_bits |= SHADER_REQ_ES31_COMPAT;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_SAMPLEID) {
name_prefix = "gl_SampleID";
ctx->shader_req_bits |= (SHADER_REQ_SAMPLE_SHADING | SHADER_REQ_INTS);
} else if (decl->Semantic.Name == TGSI_SEMANTIC_SAMPLEPOS) {
name_prefix = "gl_SamplePosition";
ctx->shader_req_bits |= SHADER_REQ_SAMPLE_SHADING;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_INVOCATIONID) {
name_prefix = "gl_InvocationID";
ctx->shader_req_bits |= (SHADER_REQ_INTS | SHADER_REQ_GPU_SHADER5);
} else if (decl->Semantic.Name == TGSI_SEMANTIC_SAMPLEMASK) {
name_prefix = "gl_SampleMaskIn[0]";
ctx->shader_req_bits |= (SHADER_REQ_INTS | SHADER_REQ_GPU_SHADER5);
} else if (decl->Semantic.Name == TGSI_SEMANTIC_PRIMID) {
name_prefix = "gl_PrimitiveID";
ctx->shader_req_bits |= (SHADER_REQ_INTS | SHADER_REQ_GPU_SHADER5);
} else if (decl->Semantic.Name == TGSI_SEMANTIC_TESSCOORD) {
name_prefix = "gl_TessCoord";
ctx->system_values[i].override_no_wm = false;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_VERTICESIN) {
ctx->shader_req_bits |= SHADER_REQ_INTS;
name_prefix = "gl_PatchVerticesIn";
} else if (decl->Semantic.Name == TGSI_SEMANTIC_TESSOUTER) {
name_prefix = "gl_TessLevelOuter";
} else if (decl->Semantic.Name == TGSI_SEMANTIC_TESSINNER) {
name_prefix = "gl_TessLevelInner";
} else if (decl->Semantic.Name == TGSI_SEMANTIC_THREAD_ID) {
name_prefix = "gl_LocalInvocationID";
ctx->system_values[i].override_no_wm = false;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_BLOCK_ID) {
name_prefix = "gl_WorkGroupID";
ctx->system_values[i].override_no_wm = false;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_GRID_SIZE) {
name_prefix = "gl_NumWorkGroups";
ctx->system_values[i].override_no_wm = false;
} else {
fprintf(stderr, "unsupported system value %d\n", decl->Semantic.Name);
name_prefix = "unknown";
}
snprintf(ctx->system_values[i].glsl_name, 64, "%s", name_prefix);
break;
case TGSI_FILE_MEMORY:
ctx->has_file_memory = true;
break;
default:
fprintf(stderr,"unsupported file %d declaration\n", decl->Declaration.File);
break;
}
return TRUE;
}
static boolean
iter_property(struct tgsi_iterate_context *iter,
struct tgsi_full_property *prop)
{
struct dump_ctx *ctx = (struct dump_ctx *) iter;
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
if (prop->u[0].Data == 1)
ctx->write_all_cbufs = true;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_COORD_ORIGIN) {
ctx->fs_coord_origin = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_COORD_PIXEL_CENTER) {
ctx->fs_pixel_center = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_INPUT_PRIM) {
ctx->gs_in_prim = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_OUTPUT_PRIM) {
ctx->gs_out_prim = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
ctx->gs_max_out_verts = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_GS_INVOCATIONS) {
ctx->gs_num_invocations = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_NUM_CLIPDIST_ENABLED) {
ctx->num_clip_dist_prop = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_NUM_CULLDIST_ENABLED) {
ctx->num_cull_dist_prop = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_TCS_VERTICES_OUT) {
ctx->tcs_vertices_out = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_TES_PRIM_MODE) {
ctx->tes_prim_mode = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_TES_SPACING) {
ctx->tes_spacing = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_TES_VERTEX_ORDER_CW) {
ctx->tes_vertex_order = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_TES_POINT_MODE) {
ctx->tes_point_mode = prop->u[0].Data;
}
if (prop->Property.PropertyName == TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL) {
ctx->early_depth_stencil = prop->u[0].Data > 0;
if (ctx->early_depth_stencil) {
require_glsl_ver(ctx, 150);
ctx->shader_req_bits |= SHADER_REQ_IMAGE_LOAD_STORE;
}
}
if (prop->Property.PropertyName == TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH)
ctx->local_cs_block_size[0] = prop->u[0].Data;
if (prop->Property.PropertyName == TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT)
ctx->local_cs_block_size[1] = prop->u[0].Data;
if (prop->Property.PropertyName == TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH)
ctx->local_cs_block_size[2] = prop->u[0].Data;
return TRUE;
}
static boolean
iter_immediate(
struct tgsi_iterate_context *iter,
struct tgsi_full_immediate *imm )
{
struct dump_ctx *ctx = (struct dump_ctx *) iter;
int i;
uint32_t first = ctx->num_imm;
if (first >= ARRAY_SIZE(ctx->imm)) {
fprintf(stderr, "Number of immediates exceeded, max is: %lu\n", ARRAY_SIZE(ctx->imm));
return FALSE;
}
ctx->imm[first].type = imm->Immediate.DataType;
for (i = 0; i < 4; i++) {
if (imm->Immediate.DataType == TGSI_IMM_FLOAT32) {
ctx->imm[first].val[i].f = imm->u[i].Float;
} else if (imm->Immediate.DataType == TGSI_IMM_UINT32 ||
imm->Immediate.DataType == TGSI_IMM_FLOAT64) {
ctx->shader_req_bits |= SHADER_REQ_INTS;
ctx->imm[first].val[i].ui = imm->u[i].Uint;
} else if (imm->Immediate.DataType == TGSI_IMM_INT32) {
ctx->shader_req_bits |= SHADER_REQ_INTS;
ctx->imm[first].val[i].i = imm->u[i].Int;
}
}
ctx->num_imm++;
return TRUE;
}
static char get_swiz_char(int swiz)
{
switch(swiz){
case TGSI_SWIZZLE_X: return 'x';
case TGSI_SWIZZLE_Y: return 'y';
case TGSI_SWIZZLE_Z: return 'z';
case TGSI_SWIZZLE_W: return 'w';
default: return 0;
}
}
static int emit_cbuf_writes(struct dump_ctx *ctx)
{
char buf[255];
int i;
char *sret;
for (i = ctx->num_outputs; i < ctx->cfg->max_draw_buffers; i++) {
snprintf(buf, 255, "fsout_c%d = fsout_c0;\n", i);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
static int emit_a8_swizzle(struct dump_ctx *ctx)
{
char buf[255];
char *sret;
snprintf(buf, 255, "fsout_c0.x = fsout_c0.w;\n");
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
return 0;
}
static const char *atests[PIPE_FUNC_ALWAYS + 1] = {
"false",
"<",
"==",
"<=",
">",
"!=",
">=",
"true"
};
static int emit_alpha_test(struct dump_ctx *ctx)
{
char buf[255];
char comp_buf[128];
char *sret;
if (!ctx->num_outputs)
return 0;
if (!ctx->write_all_cbufs) {
/* only emit alpha stanza if first output is 0 */
if (ctx->outputs[0].sid != 0)
return 0;
}
switch (ctx->key->alpha_test) {
case PIPE_FUNC_NEVER:
case PIPE_FUNC_ALWAYS:
snprintf(comp_buf, 128, "%s", atests[ctx->key->alpha_test]);
break;
case PIPE_FUNC_LESS:
case PIPE_FUNC_EQUAL:
case PIPE_FUNC_LEQUAL:
case PIPE_FUNC_GREATER:
case PIPE_FUNC_NOTEQUAL:
case PIPE_FUNC_GEQUAL:
snprintf(comp_buf, 128, "%s %s %f", "fsout_c0.w", atests[ctx->key->alpha_test], ctx->key->alpha_ref_val);
break;
default:
fprintf(stderr, "invalid alpha-test: %x\n", ctx->key->alpha_test);
return EINVAL;
}
snprintf(buf, 255, "if (!(%s)) {\n\tdiscard;\n}\n", comp_buf);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
return 0;
}
static int emit_pstipple_pass(struct dump_ctx *ctx)
{
char buf[255];
char *sret;
snprintf(buf, 255, "stip_temp = texture(pstipple_sampler, vec2(gl_FragCoord.x / 32, gl_FragCoord.y / 32)).x;\n");
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
snprintf(buf, 255, "if (stip_temp > 0) {\n\tdiscard;\n}\n");
sret = add_str_to_glsl_main(ctx, buf);
return sret ? 0 : ENOMEM;
}
static int emit_color_select(struct dump_ctx *ctx)
{
char buf[255];
char *sret = NULL;
if (!ctx->key->color_two_side || !(ctx->color_in_mask & 0x3))
return 0;
if (ctx->color_in_mask & 1) {
snprintf(buf, 255, "realcolor0 = gl_FrontFacing ? ex_c0 : ex_bc0;\n");
sret = add_str_to_glsl_main(ctx, buf);
}
if (ctx->color_in_mask & 2) {
snprintf(buf, 255, "realcolor1 = gl_FrontFacing ? ex_c1 : ex_bc1;\n");
sret = add_str_to_glsl_main(ctx, buf);
}
return sret ? 0 : ENOMEM;
}
static int emit_prescale(struct dump_ctx *ctx)
{
char buf[255];
char *sret;
snprintf(buf, 255, "gl_Position.y = gl_Position.y * winsys_adjust_y;\n");
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
return 0;
}
static int prepare_so_movs(struct dump_ctx *ctx)
{
uint32_t i;
for (i = 0; i < ctx->so->num_outputs; i++) {
ctx->write_so_outputs[i] = true;
if (ctx->so->output[i].start_component != 0)
continue;
if (ctx->so->output[i].num_components != 4)
continue;
if (ctx->outputs[ctx->so->output[i].register_index].name == TGSI_SEMANTIC_CLIPDIST)
continue;
if (ctx->outputs[ctx->so->output[i].register_index].name == TGSI_SEMANTIC_POSITION)
continue;
ctx->outputs[ctx->so->output[i].register_index].stream = ctx->so->output[i].stream;
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY && ctx->so->output[i].stream)
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
ctx->write_so_outputs[i] = false;
}
return 0;
}
static int emit_so_movs(struct dump_ctx *ctx)
{
char buf[255];
uint32_t i, j;
char outtype[15] = {0};
char writemask[6];
char *sret;
if (ctx->so->num_outputs >= PIPE_MAX_SO_OUTPUTS) {
fprintf(stderr, "Num outputs exceeded, max is %u\n", PIPE_MAX_SO_OUTPUTS);
return EINVAL;
}
for (i = 0; i < ctx->so->num_outputs; i++) {
if (ctx->so->output[i].start_component != 0) {
int wm_idx = 0;
writemask[wm_idx++] = '.';
for (j = 0; j < ctx->so->output[i].num_components; j++) {
unsigned idx = ctx->so->output[i].start_component + j;
if (idx >= 4)
break;
if (idx <= 2)
writemask[wm_idx++] = 'x' + idx;
else
writemask[wm_idx++] = 'w';
}
writemask[wm_idx] = '\0';
} else
writemask[0] = 0;
if (!ctx->write_so_outputs[i]) {
if (ctx->so->output[i].register_index > ctx->num_outputs)
ctx->so_names[i] = NULL;
else if (ctx->outputs[ctx->so->output[i].register_index].name == TGSI_SEMANTIC_CLIPVERTEX && ctx->has_clipvertex) {
ctx->so_names[i] = strdup("clipv_tmp");
ctx->has_clipvertex_so = true;
} else
ctx->so_names[i] = strdup(ctx->outputs[ctx->so->output[i].register_index].glsl_name);
} else {
char ntemp[8];
snprintf(ntemp, 8, "tfout%d", i);
ctx->so_names[i] = strdup(ntemp);
}
if (ctx->so->output[i].num_components == 1) {
if (ctx->outputs[ctx->so->output[i].register_index].is_int)
snprintf(outtype, 15, "intBitsToFloat");
else
snprintf(outtype, 15, "float");
} else
snprintf(outtype, 15, "vec%d", ctx->so->output[i].num_components);
if (ctx->so->output[i].register_index >= 255)
continue;
buf[0] = 0;
if (ctx->outputs[ctx->so->output[i].register_index].name == TGSI_SEMANTIC_CLIPDIST) {
snprintf(buf, 255, "tfout%d = %s(clip_dist_temp[%d]%s);\n", i, outtype, ctx->outputs[ctx->so->output[i].register_index].sid,
writemask);
} else {
if (ctx->write_so_outputs[i])
snprintf(buf, 255, "tfout%d = %s(%s%s);\n", i, outtype, ctx->outputs[ctx->so->output[i].register_index].glsl_name, writemask);
}
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
static int emit_clip_dist_movs(struct dump_ctx *ctx)
{
char buf[255];
int i;
char *sret;
bool has_prop = (ctx->num_clip_dist_prop + ctx->num_cull_dist_prop) > 0;
int ndists;
const char *prefix="";
if (ctx->prog_type == PIPE_SHADER_TESS_CTRL)
prefix = "gl_out[gl_InvocationID].";
if (ctx->num_clip_dist == 0 && ctx->key->clip_plane_enable) {
for (i = 0; i < 8; i++) {
snprintf(buf, 255, "%sgl_ClipDistance[%d] = dot(%s, clipp[%d]);\n", prefix, i, ctx->has_clipvertex ? "clipv_tmp" : "gl_Position", i);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
ndists = ctx->num_clip_dist;
if (has_prop)
ndists = ctx->num_clip_dist_prop + ctx->num_cull_dist_prop;
for (i = 0; i < ndists; i++) {
int clipidx = i < 4 ? 0 : 1;
char swiz = i & 3;
char wm = 0;
switch (swiz) {
case 0: wm = 'x'; break;
case 1: wm = 'y'; break;
case 2: wm = 'z'; break;
case 3: wm = 'w'; break;
default:
return EINVAL;
}
bool is_cull = false;
if (has_prop) {
if (i >= ctx->num_clip_dist_prop && i < ctx->num_clip_dist_prop + ctx->num_cull_dist_prop)
is_cull = true;
}
const char *clip_cull = is_cull ? "Cull" : "Clip";
snprintf(buf, 255, "%sgl_%sDistance[%d] = clip_dist_temp[%d].%c;\n", prefix, clip_cull,
is_cull ? i - ctx->num_clip_dist_prop : i, clipidx, wm);
sret = add_str_to_glsl_main(ctx, buf);
if (!sret)
return ENOMEM;
}
return 0;
}
#define emit_arit_op2(op) snprintf(buf, 255, "%s = %s(%s((%s %s %s))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], op, srcs[1], writemask)
#define emit_op1(op) snprintf(buf, 255, "%s = %s(%s(%s(%s))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), op, srcs[0], writemask)
#define emit_compare(op) snprintf(buf, 255, "%s = %s(%s((%s(%s(%s), %s(%s))))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), op, get_string(sinfo.svec4), srcs[0], get_string(sinfo.svec4), srcs[1], writemask)
#define emit_ucompare(op) snprintf(buf, 255, "%s = %s(uintBitsToFloat(%s(%s(%s(%s), %s(%s))%s) * %s(0xffffffff)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.udstconv), op, get_string(sinfo.svec4), srcs[0], get_string(sinfo.svec4), srcs[1], writemask, get_string(dinfo.udstconv))
static int emit_buf(struct dump_ctx *ctx, const char *buf)
{
int i;
char *sret;
for (i = 0; i < ctx->indent_level; i++) {
sret = add_str_to_glsl_main(ctx, "\t");
if (!sret)
return ENOMEM;
}
sret = add_str_to_glsl_main(ctx, buf);
return sret ? 0 : ENOMEM;
}
#define EMIT_BUF_WITH_RET(ctx, buf) do { \
int _ret = emit_buf((ctx), (buf)); \
if (_ret) return FALSE; \
} while(0)
static int handle_vertex_proc_exit(struct dump_ctx *ctx)
{
if (ctx->so && !ctx->key->gs_present && !ctx->key->tes_present) {
if (emit_so_movs(ctx))
return FALSE;
}
if (emit_clip_dist_movs(ctx))
return FALSE;
if (!ctx->key->gs_present && !ctx->key->tes_present) {
if (emit_prescale(ctx))
return FALSE;
}
return TRUE;
}
static int handle_fragment_proc_exit(struct dump_ctx *ctx)
{
if (ctx->key->pstipple_tex) {
if (emit_pstipple_pass(ctx))
return FALSE;
}
if (ctx->key->cbufs_are_a8_bitmask) {
if (emit_a8_swizzle(ctx))
return FALSE;
}
if (ctx->key->add_alpha_test) {
if (emit_alpha_test(ctx))
return FALSE;
}
if (ctx->write_all_cbufs) {
if (emit_cbuf_writes(ctx))
return FALSE;
}
return TRUE;
}
static bool set_texture_reqs(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
uint32_t sreg_index,
bool *is_shad)
{
if (sreg_index >= ARRAY_SIZE(ctx->samplers)) {
fprintf(stderr, "Sampler view exceeded, max is %lu\n", ARRAY_SIZE(ctx->samplers));
return false;
}
ctx->samplers[sreg_index].tgsi_sampler_type = inst->Texture.Texture;
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_2D_ARRAY:
break;
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
*is_shad = true;
/* fallthrough */
case TGSI_TEXTURE_CUBE_ARRAY:
ctx->shader_req_bits |= SHADER_REQ_CUBE_ARRAY;
break;
case TGSI_TEXTURE_2D_MSAA:
case TGSI_TEXTURE_2D_ARRAY_MSAA:
ctx->shader_req_bits |= SHADER_REQ_SAMPLER_MS;
break;
case TGSI_TEXTURE_BUFFER:
ctx->uses_sampler_buf = true;
break;
case TGSI_TEXTURE_SHADOWRECT:
*is_shad = true;
/* fallthrough */
case TGSI_TEXTURE_RECT:
ctx->shader_req_bits |= SHADER_REQ_SAMPLER_RECT;
break;
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
*is_shad = true;
break;
default:
fprintf(stderr, "unhandled texture: %x\n", inst->Texture.Texture);
return false;
}
if (ctx->cfg->glsl_version >= 140)
if ((ctx->shader_req_bits & SHADER_REQ_SAMPLER_RECT) || ctx->uses_sampler_buf)
require_glsl_ver(ctx, 140);
return true;
}
/* size queries are pretty much separate */
static int emit_txq(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
uint32_t sreg_index,
char srcs[4][255],
char dsts[3][255],
const char *writemask)
{
unsigned twm = TGSI_WRITEMASK_NONE;
char bias[128] = {0};
char buf[512];
const int sampler_index = 1;
bool is_shad;
enum vrend_type_qualifier dtypeprefix = INT_BITS_TO_FLOAT;
if (set_texture_reqs(ctx, inst, sreg_index, &is_shad) == false)
return FALSE;
/* no lod parameter for txq for these */
if (inst->Texture.Texture != TGSI_TEXTURE_RECT &&
inst->Texture.Texture != TGSI_TEXTURE_SHADOWRECT &&
inst->Texture.Texture != TGSI_TEXTURE_BUFFER &&
inst->Texture.Texture != TGSI_TEXTURE_2D_MSAA &&
inst->Texture.Texture != TGSI_TEXTURE_2D_ARRAY_MSAA)
snprintf(bias, 128, ", int(%s.w)", srcs[0]);
/* need to emit a textureQueryLevels */
if (inst->Dst[0].Register.WriteMask & 0x8) {
if (inst->Texture.Texture != TGSI_TEXTURE_BUFFER &&
inst->Texture.Texture != TGSI_TEXTURE_RECT &&
inst->Texture.Texture != TGSI_TEXTURE_2D_MSAA &&
inst->Texture.Texture != TGSI_TEXTURE_2D_ARRAY_MSAA) {
ctx->shader_req_bits |= SHADER_REQ_TXQ_LEVELS;
if (inst->Dst[0].Register.WriteMask & 0x7)
twm = TGSI_WRITEMASK_W;
snprintf(buf, 255, "%s%s = %s(textureQueryLevels(%s));\n", dsts[0], get_wm_string(twm), get_string(dtypeprefix), srcs[sampler_index]);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x7) {
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_BUFFER:
case TGSI_TEXTURE_SHADOW1D:
twm = TGSI_WRITEMASK_X;
break;
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_2D_MSAA:
twm = TGSI_WRITEMASK_XY;
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
case TGSI_TEXTURE_CUBE_ARRAY:
case TGSI_TEXTURE_2D_ARRAY_MSAA:
twm = TGSI_WRITEMASK_XYZ;
break;
}
}
}
if (inst->Dst[0].Register.WriteMask & 0x7) {
snprintf(buf, 255, "%s%s = %s(textureSize(%s%s))%s;\n", dsts[0], get_wm_string(twm), get_string(dtypeprefix), srcs[sampler_index], bias, util_bitcount(inst->Dst[0].Register.WriteMask) > 1 ? writemask : "");
EMIT_BUF_WITH_RET(ctx, buf);
}
return 0;
}
/* sample queries are pretty much separate */
static int emit_txqs(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
uint32_t sreg_index,
char srcs[4][255],
char dsts[3][255])
{
char buf[512];
const int sampler_index = 0;
bool is_shad;
enum vrend_type_qualifier dtypeprefix = INT_BITS_TO_FLOAT;
ctx->shader_req_bits |= SHADER_REQ_TXQS;
if (set_texture_reqs(ctx, inst, sreg_index, &is_shad) == false)
return FALSE;
if (inst->Texture.Texture != TGSI_TEXTURE_2D_MSAA &&
inst->Texture.Texture != TGSI_TEXTURE_2D_ARRAY_MSAA)
return FALSE;
snprintf(buf, 255, "%s = %s(textureSamples(%s));\n", dsts[0],
get_string(dtypeprefix), srcs[sampler_index]);
EMIT_BUF_WITH_RET(ctx, buf);
return 0;
}
static const char *get_tex_inst_ext(struct tgsi_full_instruction *inst)
{
const char *tex_ext = "";
if (inst->Instruction.Opcode == TGSI_OPCODE_LODQ) {
tex_ext = "QueryLOD";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
if (inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_1D_ARRAY)
tex_ext = "";
else if (inst->Texture.NumOffsets == 1)
tex_ext = "ProjOffset";
else
tex_ext = "Proj";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXL ||
inst->Instruction.Opcode == TGSI_OPCODE_TXL2) {
if (inst->Texture.NumOffsets == 1)
tex_ext = "LodOffset";
else
tex_ext = "Lod";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
if (inst->Texture.NumOffsets == 1)
tex_ext = "GradOffset";
else
tex_ext = "Grad";
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TG4) {
if (inst->Texture.NumOffsets == 4)
tex_ext = "GatherOffsets";
else if (inst->Texture.NumOffsets == 1)
tex_ext = "GatherOffset";
else
tex_ext = "Gather";
} else {
if (inst->Texture.NumOffsets == 1)
tex_ext = "Offset";
else
tex_ext = "";
}
return tex_ext;
}
static bool fill_offset_buffer(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
char *offbuf)
{
if (inst->TexOffsets[0].File == TGSI_FILE_IMMEDIATE) {
struct immed *imd = &ctx->imm[inst->TexOffsets[0].Index];
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
snprintf(offbuf, 25, ", int(%d)", imd->val[inst->TexOffsets[0].SwizzleX].i);
break;
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
snprintf(offbuf, 25, ", ivec2(%d, %d)", imd->val[inst->TexOffsets[0].SwizzleX].i, imd->val[inst->TexOffsets[0].SwizzleY].i);
break;
case TGSI_TEXTURE_3D:
snprintf(offbuf, 25, ", ivec3(%d, %d, %d)", imd->val[inst->TexOffsets[0].SwizzleX].i, imd->val[inst->TexOffsets[0].SwizzleY].i,
imd->val[inst->TexOffsets[0].SwizzleZ].i);
break;
default:
fprintf(stderr, "unhandled texture: %x\n", inst->Texture.Texture);
return false;
}
} else if (inst->TexOffsets[0].File == TGSI_FILE_TEMPORARY) {
struct vrend_temp_range *range = find_temp_range(ctx, inst->TexOffsets[0].Index);
int idx = inst->TexOffsets[0].Index - range->first;
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
snprintf(offbuf, 120, ", int(floatBitsToInt(temp%d[%d].%c))",
range->first, idx,
get_swiz_char(inst->TexOffsets[0].SwizzleX));
break;
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
snprintf(offbuf, 120, ", ivec2(floatBitsToInt(temp%d[%d].%c), floatBitsToInt(temp%d[%d].%c))",
range->first, idx,
get_swiz_char(inst->TexOffsets[0].SwizzleX),
range->first, idx,
get_swiz_char(inst->TexOffsets[0].SwizzleY));
break;
case TGSI_TEXTURE_3D:
snprintf(offbuf, 120, ", ivec3(floatBitsToInt(temp%d[%d].%c), floatBitsToInt(temp%d[%d].%c), floatBitsToInt(temp%d[%d].%c)",
range->first, idx,
get_swiz_char(inst->TexOffsets[0].SwizzleX),
range->first, idx,
get_swiz_char(inst->TexOffsets[0].SwizzleY),
range->first, idx,
get_swiz_char(inst->TexOffsets[0].SwizzleZ));
break;
default:
fprintf(stderr, "unhandled texture: %x\n", inst->Texture.Texture);
return false;
break;
}
} else if (inst->TexOffsets[0].File == TGSI_FILE_INPUT) {
for (uint32_t j = 0; j < ctx->num_inputs; j++) {
if (ctx->inputs[j].first != inst->TexOffsets[0].Index)
continue;
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
snprintf(offbuf, 120, ", int(floatBitsToInt(%s.%c))",
ctx->inputs[j].glsl_name,
get_swiz_char(inst->TexOffsets[0].SwizzleX));
break;
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
snprintf(offbuf, 120, ", ivec2(floatBitsToInt(%s.%c), floatBitsToInt(%s.%c))",
ctx->inputs[j].glsl_name,
get_swiz_char(inst->TexOffsets[0].SwizzleX),
ctx->inputs[j].glsl_name,
get_swiz_char(inst->TexOffsets[0].SwizzleY));
break;
case TGSI_TEXTURE_3D:
snprintf(offbuf, 120, ", ivec3(floatBitsToInt(%s.%c), floatBitsToInt(%s.%c), floatBitsToInt(%s.%c)",
ctx->inputs[j].glsl_name,
get_swiz_char(inst->TexOffsets[0].SwizzleX),
ctx->inputs[j].glsl_name,
get_swiz_char(inst->TexOffsets[0].SwizzleY),
ctx->inputs[j].glsl_name,
get_swiz_char(inst->TexOffsets[0].SwizzleZ));
break;
default:
fprintf(stderr, "unhandled texture: %x\n", inst->Texture.Texture);
return false;
break;
}
}
}
return true;
}
static int translate_tex(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
struct source_info *sinfo,
struct dest_info *dinfo,
char srcs[4][255],
char dsts[3][255],
const char *writemask)
{
enum vrend_type_qualifier txfi = TYPE_CONVERSION_NONE;
unsigned twm = TGSI_WRITEMASK_NONE, gwm = TGSI_WRITEMASK_NONE;
enum vrend_type_qualifier dtypeprefix = TYPE_CONVERSION_NONE;
bool is_shad = false;
char buf[512];
char offbuf[128] = {0};
char bias[128] = {0};
int sampler_index;
const char *tex_ext;
if (set_texture_reqs(ctx, inst, sinfo->sreg_index, &is_shad) == false)
return FALSE;
switch (ctx->samplers[sinfo->sreg_index].tgsi_sampler_return) {
case TGSI_RETURN_TYPE_SINT:
/* if dstconv isn't an int */
if (dinfo->dstconv != INT)
dtypeprefix = INT_BITS_TO_FLOAT;
break;
case TGSI_RETURN_TYPE_UINT:
/* if dstconv isn't an int */
if (dinfo->dstconv != INT)
dtypeprefix = UINT_BITS_TO_FLOAT;
break;
default:
break;
}
sampler_index = 1;
if (inst->Instruction.Opcode == TGSI_OPCODE_LODQ)
ctx->shader_req_bits |= SHADER_REQ_LODQ;
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_BUFFER:
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP)
twm = TGSI_WRITEMASK_NONE;
else
twm = TGSI_WRITEMASK_X;
txfi = INT;
break;
case TGSI_TEXTURE_1D_ARRAY:
twm = TGSI_WRITEMASK_XY;
txfi = IVEC2;
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP)
twm = TGSI_WRITEMASK_NONE;
else
twm = TGSI_WRITEMASK_XY;
txfi = IVEC2;
break;
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_3D:
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP)
twm = TGSI_WRITEMASK_NONE;
else if (inst->Instruction.Opcode == TGSI_OPCODE_TG4)
twm = TGSI_WRITEMASK_XY;
else
twm = TGSI_WRITEMASK_XYZ;
txfi = IVEC3;
break;
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_2D_ARRAY:
twm = TGSI_WRITEMASK_XYZ;
txfi = IVEC3;
break;
case TGSI_TEXTURE_2D_MSAA:
twm = TGSI_WRITEMASK_XY;
txfi = IVEC2;
break;
case TGSI_TEXTURE_2D_ARRAY_MSAA:
twm = TGSI_WRITEMASK_XYZ;
txfi = IVEC3;
break;
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
case TGSI_TEXTURE_CUBE_ARRAY:
default:
if (inst->Instruction.Opcode == TGSI_OPCODE_TG4 &&
inst->Texture.Texture != TGSI_TEXTURE_CUBE_ARRAY
&& inst->Texture.Texture != TGSI_TEXTURE_SHADOWCUBE_ARRAY)
twm = TGSI_WRITEMASK_XYZ;
else
twm = TGSI_WRITEMASK_NONE;
txfi = TYPE_CONVERSION_NONE;
break;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
gwm = TGSI_WRITEMASK_X;
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
gwm = TGSI_WRITEMASK_XY;
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
gwm = TGSI_WRITEMASK_XYZ;
break;
default:
gwm = TGSI_WRITEMASK_NONE;
break;
}
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2 || inst->Instruction.Opcode == TGSI_OPCODE_TXL2 || inst->Instruction.Opcode == TGSI_OPCODE_TEX2) {
sampler_index = 2;
if (inst->Instruction.Opcode != TGSI_OPCODE_TEX2)
snprintf(bias, 64, ", %s.x", srcs[1]);
else if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
snprintf(bias, 64, ", float(%s)", srcs[1]);
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXB || inst->Instruction.Opcode == TGSI_OPCODE_TXL)
snprintf(bias, 64, ", %s.w", srcs[0]);
else if (inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
if (inst->Texture.Texture == TGSI_TEXTURE_1D ||
inst->Texture.Texture == TGSI_TEXTURE_2D ||
inst->Texture.Texture == TGSI_TEXTURE_2D_MSAA ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY_MSAA ||
inst->Texture.Texture == TGSI_TEXTURE_3D ||
inst->Texture.Texture == TGSI_TEXTURE_1D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY) {
snprintf(bias, 64, ", int(%s.w)", srcs[0]);
}
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
snprintf(bias, 128, ", %s%s, %s%s", srcs[1], get_wm_string(gwm), srcs[2], get_wm_string(gwm));
sampler_index = 3;
} else if (inst->Instruction.Opcode == TGSI_OPCODE_TG4) {
sampler_index = 2;
ctx->shader_req_bits |= SHADER_REQ_TG4;
if (inst->Texture.NumOffsets > 1 || is_shad || (ctx->shader_req_bits & SHADER_REQ_SAMPLER_RECT))
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
if (inst->Texture.NumOffsets == 1) {
if (inst->TexOffsets[0].File != TGSI_FILE_IMMEDIATE)
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
}
if (is_shad) {
if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D_ARRAY)
snprintf(bias, 64, ", %s.w", srcs[0]);
else if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
snprintf(bias, 64, ", %s.x", srcs[1]);
else
snprintf(bias, 64, ", %s.z", srcs[0]);
} else if (sinfo->tg4_has_component) {
if (inst->Texture.NumOffsets == 0) {
if (inst->Texture.Texture == TGSI_TEXTURE_2D ||
inst->Texture.Texture == TGSI_TEXTURE_RECT ||
inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY)
snprintf(bias, 64, ", int(%s)", srcs[1]);
} else if (inst->Texture.NumOffsets) {
if (inst->Texture.Texture == TGSI_TEXTURE_2D ||
inst->Texture.Texture == TGSI_TEXTURE_RECT ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY)
snprintf(bias, 64, ", int(%s)", srcs[1]);
}
}
} else
bias[0] = 0;
tex_ext = get_tex_inst_ext(inst);
if (inst->Texture.NumOffsets == 1) {
if (inst->TexOffsets[0].Index >= (int)ARRAY_SIZE(ctx->imm)) {
fprintf(stderr, "Immediate exceeded, max is %lu\n", ARRAY_SIZE(ctx->imm));
return false;
}
if (!fill_offset_buffer(ctx, inst, offbuf))
return false;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXL || inst->Instruction.Opcode == TGSI_OPCODE_TXL2 || inst->Instruction.Opcode == TGSI_OPCODE_TXD || (inst->Instruction.Opcode == TGSI_OPCODE_TG4 && is_shad)) {
char tmp[128];
strcpy(tmp, offbuf);
strcpy(offbuf, bias);
strcpy(bias, tmp);
}
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
snprintf(buf, 255, "%s = %s(%s(texelFetch%s(%s, %s(%s%s)%s%s)%s));\n", dsts[0], get_string(dinfo->dstconv), get_string(dtypeprefix), tex_ext, srcs[sampler_index], get_string(txfi), srcs[0], get_wm_string(twm), bias, offbuf, dinfo->dst_override_no_wm[0] ? "" : writemask);
} else if (ctx->cfg->glsl_version < 140 && (ctx->shader_req_bits & SHADER_REQ_SAMPLER_RECT)) {
/* rect is special in GLSL 1.30 */
if (inst->Texture.Texture == TGSI_TEXTURE_RECT)
snprintf(buf, 255, "%s = texture2DRect(%s, %s.xy)%s;\n", dsts[0], srcs[sampler_index], srcs[0], writemask);
else if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT)
snprintf(buf, 255, "%s = shadow2DRect(%s, %s.xyz)%s;\n", dsts[0], srcs[sampler_index], srcs[0], writemask);
} else if (is_shad && inst->Instruction.Opcode != TGSI_OPCODE_TG4) { /* TGSI returns 1.0 in alpha */
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
const struct tgsi_full_src_register *src = &inst->Src[sampler_index];
snprintf(buf, 255, "%s = %s(%s(vec4(vec4(texture%s(%s, %s%s%s%s)) * %sshadmask%d + %sshadadd%d)%s));\n", dsts[0], get_string(dinfo->dstconv), get_string(dtypeprefix), tex_ext, srcs[sampler_index], srcs[0], get_wm_string(twm), offbuf, bias, cname, src->Register.Index, cname, src->Register.Index, writemask);
} else {
/* OpenGL ES do not support 1D texture
* so we use a 2D texture with a parameter set to 0.5
*/
if (ctx->cfg->use_gles && inst->Texture.Texture == TGSI_TEXTURE_1D) {
snprintf(buf, 255, "%s = %s(%s(texture2D(%s, vec2(%s%s%s%s, 0.5))%s));\n", dsts[0], get_string(dinfo->dstconv), get_string(dtypeprefix), srcs[sampler_index], srcs[0], get_wm_string(twm), offbuf, bias, dinfo->dst_override_no_wm[0] ? "" : writemask);
} else {
snprintf(buf, 255, "%s = %s(%s(texture%s(%s, %s%s%s%s)%s));\n", dsts[0], get_string(dinfo->dstconv), get_string(dtypeprefix), tex_ext, srcs[sampler_index], srcs[0], get_wm_string(twm), offbuf, bias, dinfo->dst_override_no_wm[0] ? "" : writemask);
}
}
return emit_buf(ctx, buf);
}
static void
create_swizzled_clipdist(struct dump_ctx *ctx,
char *result,
const struct tgsi_full_src_register *src,
int input_idx,
bool gl_in,
const char *stypeprefix,
const char *prefix,
const char *arrayname)
{
char clipdistvec[4][64] = {};
int idx;
bool has_prev_vals = (ctx->key->prev_stage_num_cull_out + ctx->key->prev_stage_num_clip_out) > 0;
int num_culls = has_prev_vals ? ctx->key->prev_stage_num_cull_out : 0;
int num_clips = has_prev_vals ? ctx->key->prev_stage_num_clip_out : ctx->num_in_clip_dist;
for (unsigned cc = 0; cc < 4; cc++) {
const char *cc_name = ctx->inputs[input_idx].glsl_name;
idx = ctx->inputs[input_idx].sid * 4;
if (cc == 0)
idx += src->Register.SwizzleX;
else if (cc == 1)
idx += src->Register.SwizzleY;
else if (cc == 2)
idx += src->Register.SwizzleZ;
else if (cc == 3)
idx += src->Register.SwizzleW;
if (num_culls) {
if (idx >= num_clips) {
idx -= num_clips;
cc_name = "gl_CullDistance";
}
if (ctx->key->prev_stage_num_cull_out)
if (idx >= ctx->key->prev_stage_num_cull_out)
idx = 0;
} else {
if (ctx->key->prev_stage_num_clip_out)
if (idx >= ctx->key->prev_stage_num_clip_out)
idx = 0;
}
if (gl_in)
snprintf(clipdistvec[cc], 64, "%sgl_in%s.%s[%d]", prefix, arrayname, cc_name, idx);
else
snprintf(clipdistvec[cc], 64, "%s%s%s[%d]", prefix, arrayname, cc_name, idx);
}
snprintf(result, 255, "%s(vec4(%s,%s,%s,%s))", stypeprefix, clipdistvec[0], clipdistvec[1], clipdistvec[2], clipdistvec[3]);
}
static enum vrend_type_qualifier get_coord_prefix(int resource, bool *is_ms)
{
switch(resource) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_BUFFER:
return INT;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_1D_ARRAY:
return IVEC2;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_CUBE_ARRAY:
return IVEC3;
case TGSI_TEXTURE_2D_MSAA:
*is_ms = true;
return IVEC2;
case TGSI_TEXTURE_2D_ARRAY_MSAA:
*is_ms = true;
return IVEC3;
default:
return TYPE_CONVERSION_NONE;
}
}
static bool is_integer_memory(struct dump_ctx *ctx, enum tgsi_file_type file_type, uint32_t index)
{
switch(file_type) {
case TGSI_FILE_BUFFER:
return !!(ctx->ssbo_integer_mask & (1 << index));
case TGSI_FILE_MEMORY:
return ctx->integer_memory;
default:
fprintf(stderr, "Invalid file type");
}
return false;
}
static int
translate_store(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
struct source_info *sinfo,
char srcs[4][255],
char dsts[3][255])
{
const struct tgsi_full_dst_register *dst = &inst->Dst[0];
char buf[512];
if (dst->Register.File == TGSI_FILE_IMAGE) {
bool is_ms = false;
enum vrend_type_qualifier coord_prefix = get_coord_prefix(ctx->images[dst->Register.Index].decl.Resource, &is_ms);
enum tgsi_return_type itype;
char ms_str[32] = {};
enum vrend_type_qualifier stypeprefix = TYPE_CONVERSION_NONE;
const char *conversion = sinfo->override_no_cast[0] ? "" : get_string(FLOAT_BITS_TO_INT);
get_internalformat_string(inst->Memory.Format, &itype);
if (is_ms) {
snprintf(ms_str, 32, "int(%s.w),", srcs[0]);
}
switch (itype) {
case TGSI_RETURN_TYPE_UINT:
stypeprefix = FLOAT_BITS_TO_UINT;
break;
case TGSI_RETURN_TYPE_SINT:
stypeprefix = FLOAT_BITS_TO_INT;
break;
default:
break;
}
snprintf(buf, 512, "imageStore(%s,%s(%s(%s)),%s%s(%s));\n", dsts[0], get_string(coord_prefix),
conversion, srcs[0], ms_str, get_string(stypeprefix), srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
} else if (dst->Register.File == TGSI_FILE_BUFFER || dst->Register.File == TGSI_FILE_MEMORY) {
enum vrend_type_qualifier dtypeprefix;
dtypeprefix = (is_integer_memory(ctx, dst->Register.File, dst->Register.Index)) ? FLOAT_BITS_TO_INT : FLOAT_BITS_TO_UINT;
const char *conversion = sinfo->override_no_cast[1] ? "" : get_string(dtypeprefix);
if (inst->Dst[0].Register.WriteMask & 0x1) {
snprintf(buf, 255, "%s[uint(floatBitsToUint(%s))>>2] = %s(%s).x;\n", dsts[0], srcs[0], conversion, srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x2) {
snprintf(buf, 255, "%s[(uint(floatBitsToUint(%s))>>2)+1u] = %s(%s).y;\n", dsts[0], srcs[0], conversion, srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x4) {
snprintf(buf, 255, "%s[(uint(floatBitsToUint(%s))>>2)+2u] = %s(%s).z;\n", dsts[0], srcs[0], conversion, srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x8) {
snprintf(buf, 255, "%s[(uint(floatBitsToUint(%s))>>2)+3u] = %s(%s).w;\n", dsts[0], srcs[0], conversion, srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
}
}
return 0;
}
static int
translate_load(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
struct source_info *sinfo,
struct dest_info *dinfo,
char srcs[4][255],
char dsts[3][255],
const char *writemask)
{
char buf[512];
const struct tgsi_full_src_register *src = &inst->Src[0];
if (src->Register.File == TGSI_FILE_IMAGE) {
bool is_ms = false;
enum vrend_type_qualifier coord_prefix = get_coord_prefix(ctx->images[sinfo->sreg_index].decl.Resource, &is_ms);
enum vrend_type_qualifier dtypeprefix = TYPE_CONVERSION_NONE;
const char *conversion = sinfo->override_no_cast[1] ? "" : get_string(FLOAT_BITS_TO_INT);
enum tgsi_return_type itype;
get_internalformat_string(ctx->images[sinfo->sreg_index].decl.Format, &itype);
char ms_str[32] = {};
const char *wm = dinfo->dst_override_no_wm[0] ? "" : writemask;
if (is_ms) {
snprintf(ms_str, 32, ", int(%s.w)", srcs[1]);
}
switch (itype) {
case TGSI_RETURN_TYPE_UINT:
dtypeprefix = UINT_BITS_TO_FLOAT;
break;
case TGSI_RETURN_TYPE_SINT:
dtypeprefix = INT_BITS_TO_FLOAT;
break;
default:
break;
}
snprintf(buf, 512, "%s = %s(imageLoad(%s, %s(%s(%s))%s)%s);\n", dsts[0], get_string(dtypeprefix), srcs[0],
get_string(coord_prefix), conversion, srcs[1], ms_str, wm);
EMIT_BUF_WITH_RET(ctx, buf);
} else if (src->Register.File == TGSI_FILE_BUFFER ||
src->Register.File == TGSI_FILE_MEMORY) {
char mydst[255], atomic_op[9], atomic_src[10];
enum vrend_type_qualifier dtypeprefix;
strcpy(mydst, dsts[0]);
char *wmp = strchr(mydst, '.');
if (wmp)
wmp[0] = 0;
snprintf(buf, 255, "ssbo_addr_temp = uint(floatBitsToUint(%s)) >> 2;\n", srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
atomic_op[0] = atomic_src[0] = '\0';
if (ctx->ssbo_atomic_mask & (1 << src->Register.Index)) {
/* Emulate atomicCounter with atomicOr. */
strcpy(atomic_op, "atomicOr");
strcpy(atomic_src, ", uint(0)");
}
dtypeprefix = (is_integer_memory(ctx, src->Register.File, src->Register.Index)) ? INT_BITS_TO_FLOAT : UINT_BITS_TO_FLOAT;
if (inst->Dst[0].Register.WriteMask & 0x1) {
snprintf(buf, 255, "%s.x = (%s(%s(%s[ssbo_addr_temp]%s)));\n", mydst, get_string(dtypeprefix), atomic_op, srcs[0], atomic_src);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x2) {
snprintf(buf, 255, "%s.y = (%s(%s(%s[ssbo_addr_temp + 1u]%s)));\n", mydst, get_string(dtypeprefix), atomic_op, srcs[0], atomic_src);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x4) {
snprintf(buf, 255, "%s.z = (%s(%s(%s[ssbo_addr_temp + 2u]%s)));\n", mydst, get_string(dtypeprefix), atomic_op, srcs[0], atomic_src);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x8) {
snprintf(buf, 255, "%s.w = (%s(%s(%s[ssbo_addr_temp + 3u]%s)));\n", mydst, get_string(dtypeprefix), atomic_op, srcs[0], atomic_src);
EMIT_BUF_WITH_RET(ctx, buf);
}
}
return 0;
}
static const char *get_atomic_opname(int tgsi_opcode, bool *is_cas)
{
const char *opname;
*is_cas = false;
switch (tgsi_opcode) {
case TGSI_OPCODE_ATOMUADD:
opname = "Add";
break;
case TGSI_OPCODE_ATOMXCHG:
opname = "Exchange";
break;
case TGSI_OPCODE_ATOMCAS:
opname = "CompSwap";
*is_cas = true;
break;
case TGSI_OPCODE_ATOMAND:
opname = "And";
break;
case TGSI_OPCODE_ATOMOR:
opname = "Or";
break;
case TGSI_OPCODE_ATOMXOR:
opname = "Xor";
break;
case TGSI_OPCODE_ATOMUMIN:
opname = "Min";
break;
case TGSI_OPCODE_ATOMUMAX:
opname = "Max";
break;
case TGSI_OPCODE_ATOMIMIN:
opname = "Min";
break;
case TGSI_OPCODE_ATOMIMAX:
opname = "Max";
break;
default:
fprintf(stderr, "illegal atomic opcode");
return NULL;
}
return opname;
}
static int
translate_resq(struct dump_ctx *ctx, struct tgsi_full_instruction *inst,
char srcs[4][255], char dsts[3][255])
{
char buf[512];
const struct tgsi_full_src_register *src = &inst->Src[0];
if (src->Register.File == TGSI_FILE_IMAGE) {
if (inst->Dst[0].Register.WriteMask & 0x8) {
ctx->shader_req_bits |= SHADER_REQ_TXQS | SHADER_REQ_INTS;
snprintf(buf, 255, "%s = %s(imageSamples(%s));\n", dsts[0], get_string(INT_BITS_TO_FLOAT), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (inst->Dst[0].Register.WriteMask & 0x7) {
ctx->shader_req_bits |= SHADER_REQ_IMAGE_SIZE | SHADER_REQ_INTS;
snprintf(buf, 255, "%s = %s(imageSize(%s));\n", dsts[0], get_string(INT_BITS_TO_FLOAT), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
}
} else if (src->Register.File == TGSI_FILE_BUFFER) {
snprintf(buf, 255, "%s = %s(int(%s.length()) << 2);\n", dsts[0], get_string(INT_BITS_TO_FLOAT), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
}
return 0;
}
static int
translate_atomic(struct dump_ctx *ctx,
struct tgsi_full_instruction *inst,
struct source_info *sinfo,
char srcs[4][255],
char dsts[3][255])
{
char buf[512];
const struct tgsi_full_src_register *src = &inst->Src[0];
const char *opname;
enum vrend_type_qualifier stypeprefix = TYPE_CONVERSION_NONE;
enum vrend_type_qualifier dtypeprefix = TYPE_CONVERSION_NONE;
enum vrend_type_qualifier stypecast = TYPE_CONVERSION_NONE;
bool is_cas;
char cas_str[128] = {};
if (src->Register.File == TGSI_FILE_IMAGE) {
enum tgsi_return_type itype;
get_internalformat_string(ctx->images[sinfo->sreg_index].decl.Format, &itype);
switch (itype) {
default:
case TGSI_RETURN_TYPE_UINT:
stypeprefix = FLOAT_BITS_TO_UINT;
dtypeprefix = UINT_BITS_TO_FLOAT;
stypecast = UINT;
break;
case TGSI_RETURN_TYPE_SINT:
stypeprefix = FLOAT_BITS_TO_INT;
dtypeprefix = INT_BITS_TO_FLOAT;
stypecast = INT;
break;
case TGSI_RETURN_TYPE_FLOAT:
ctx->shader_req_bits |= SHADER_REQ_ES31_COMPAT;
stypecast = FLOAT;
break;
}
} else {
stypeprefix = FLOAT_BITS_TO_UINT;
dtypeprefix = UINT_BITS_TO_FLOAT;
stypecast = UINT;
}
opname = get_atomic_opname(inst->Instruction.Opcode, &is_cas);
if (!opname)
return -1;
if (is_cas)
snprintf(cas_str, 128, ", %s(%s(%s))", get_string(stypecast), get_string(stypeprefix), srcs[3]);
if (src->Register.File == TGSI_FILE_IMAGE) {
bool is_ms = false;
enum vrend_type_qualifier coord_prefix = get_coord_prefix(ctx->images[sinfo->sreg_index].decl.Resource, &is_ms);
const char *conversion = sinfo->override_no_cast[1] ? "" : get_string(FLOAT_BITS_TO_INT);
char ms_str[32] = {};
if (is_ms) {
snprintf(ms_str, 32, ", int(%s.w)", srcs[1]);
}
snprintf(buf, 512, "%s = %s(imageAtomic%s(%s, %s(%s(%s))%s, %s(%s(%s))%s));\n", dsts[0],
get_string(dtypeprefix), opname, srcs[0], get_string(coord_prefix), conversion,
srcs[1], ms_str, get_string(stypecast), get_string(stypeprefix), srcs[2], cas_str);
EMIT_BUF_WITH_RET(ctx, buf);
}
if (src->Register.File == TGSI_FILE_BUFFER || src->Register.File == TGSI_FILE_MEMORY) {
enum vrend_type_qualifier type;
if ((is_integer_memory(ctx, src->Register.File, src->Register.Index))) {
type = INT;
dtypeprefix = INT_BITS_TO_FLOAT;
stypeprefix = FLOAT_BITS_TO_INT;
} else {
type = UINT;
dtypeprefix = UINT_BITS_TO_FLOAT;
stypeprefix = FLOAT_BITS_TO_UINT;
}
snprintf(buf, 512, "%s = %s(atomic%s(%s[int(floatBitsToInt(%s)) >> 2], %s(%s(%s).x)%s));\n", dsts[0], get_string(dtypeprefix), opname, srcs[0], srcs[1], get_string(type), get_string(stypeprefix), srcs[2], cas_str);
EMIT_BUF_WITH_RET(ctx, buf);
}
return 0;
}
static int
get_destination_info(struct dump_ctx *ctx,
const struct tgsi_full_instruction *inst,
struct dest_info *dinfo,
char dsts[3][255],
char fp64_dsts[3][255],
char *writemask)
{
const struct tgsi_full_dst_register *dst_reg;
enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
if (dtype == TGSI_TYPE_SIGNED || dtype == TGSI_TYPE_UNSIGNED)
ctx->shader_req_bits |= SHADER_REQ_INTS;
if (dtype == TGSI_TYPE_DOUBLE) {
/* we need the uvec2 conversion for doubles */
ctx->shader_req_bits |= SHADER_REQ_INTS | SHADER_REQ_FP64;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
dinfo->dtypeprefix = INT_BITS_TO_FLOAT;
} else {
switch (dtype) {
case TGSI_TYPE_UNSIGNED:
dinfo->dtypeprefix = UINT_BITS_TO_FLOAT;
break;
case TGSI_TYPE_SIGNED:
dinfo->dtypeprefix = INT_BITS_TO_FLOAT;
break;
default:
break;
}
}
for (uint32_t i = 0; i < inst->Instruction.NumDstRegs; i++) {
char fp64_writemask[6] = {0};
dst_reg = &inst->Dst[i];
dinfo->dst_override_no_wm[i] = false;
if (dst_reg->Register.WriteMask != TGSI_WRITEMASK_XYZW) {
int wm_idx = 0, dbl_wm_idx = 0;
writemask[wm_idx++] = '.';
fp64_writemask[dbl_wm_idx++] = '.';
if (dst_reg->Register.WriteMask & 0x1)
writemask[wm_idx++] = 'x';
if (dst_reg->Register.WriteMask & 0x2)
writemask[wm_idx++] = 'y';
if (dst_reg->Register.WriteMask & 0x4)
writemask[wm_idx++] = 'z';
if (dst_reg->Register.WriteMask & 0x8)
writemask[wm_idx++] = 'w';
if (dtype == TGSI_TYPE_DOUBLE) {
if (dst_reg->Register.WriteMask & 0x3)
fp64_writemask[dbl_wm_idx++] = 'x';
if (dst_reg->Register.WriteMask & 0xc)
fp64_writemask[dbl_wm_idx++] = 'y';
}
if (dtype == TGSI_TYPE_DOUBLE) {
if (dbl_wm_idx == 2)
dinfo->dstconv = DOUBLE;
else
dinfo->dstconv = DVEC2;
} else {
dinfo->dstconv = FLOAT + wm_idx - 2;
dinfo->udstconv = UINT + wm_idx - 2;
dinfo->idstconv = INT + wm_idx - 2;
}
} else {
if (dtype == TGSI_TYPE_DOUBLE)
dinfo->dstconv = DVEC2;
else
dinfo->dstconv = VEC4;
dinfo->udstconv = UVEC4;
dinfo->idstconv = IVEC4;
}
if (dst_reg->Register.File == TGSI_FILE_OUTPUT) {
for (uint32_t j = 0; j < ctx->num_outputs; j++) {
if (ctx->outputs[j].first == dst_reg->Register.Index) {
if (inst->Instruction.Precise) {
ctx->outputs[j].precise = true;
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
}
if (ctx->glsl_ver_required >= 140 && ctx->outputs[j].name == TGSI_SEMANTIC_CLIPVERTEX) {
snprintf(dsts[i], 255, "clipv_tmp");
} else if (ctx->outputs[j].name == TGSI_SEMANTIC_CLIPDIST) {
snprintf(dsts[i], 255, "clip_dist_temp[%d]", ctx->outputs[j].sid);
} else if (ctx->outputs[j].name == TGSI_SEMANTIC_TESSOUTER ||
ctx->outputs[j].name == TGSI_SEMANTIC_TESSINNER ||
ctx->outputs[j].name == TGSI_SEMANTIC_SAMPLEMASK) {
int idx;
switch (dst_reg->Register.WriteMask) {
case 0x1: idx = 0; break;
case 0x2: idx = 1; break;
case 0x4: idx = 2; break;
case 0x8: idx = 3; break;
default:
idx = 0;
break;
}
snprintf(dsts[i], 255, "%s[%d]", ctx->outputs[j].glsl_name, idx);
if (ctx->outputs[j].is_int) {
dinfo->dtypeprefix = FLOAT_BITS_TO_INT;
dinfo->dstconv = INT;
}
} else {
if (ctx->outputs[j].glsl_gl_block) {
snprintf(dsts[i], 255, "gl_out[%s].%s%s",
ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL ? "gl_InvocationID" : "0",
ctx->outputs[j].glsl_name,
ctx->outputs[j].override_no_wm ? "" : writemask);
} else if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL && ctx->outputs[j].name != TGSI_SEMANTIC_PATCH) {
if (ctx_indirect_outputs(ctx)) {
if (dst_reg->Register.Indirect)
snprintf(dsts[i], 255, "oblk[gl_InvocationID].%s%d[addr%d + %d]%s", get_stage_output_name_prefix(ctx->prog_type), ctx->generic_output_range.first, dst_reg->Indirect.Index, dst_reg->Register.Index - ctx->generic_output_range.array_id, ctx->outputs[j].override_no_wm ? "" : writemask);
else
snprintf(dsts[i], 255, "oblk[gl_InvocationID].%s%d[%d]%s", get_stage_output_name_prefix(ctx->prog_type), ctx->generic_output_range.first, dst_reg->Register.Index - ctx->generic_output_range.array_id, ctx->outputs[j].override_no_wm ? "" : writemask);
} else
snprintf(dsts[i], 255, "%s[gl_InvocationID]%s", ctx->outputs[j].glsl_name, ctx->outputs[j].override_no_wm ? "" : writemask);
} else if (ctx_indirect_outputs(ctx) && ctx->outputs[j].name == TGSI_SEMANTIC_GENERIC) {
if (dst_reg->Register.Indirect)
snprintf(dsts[i], 255, "oblk.%s%d[addr%d + %d]%s", get_stage_output_name_prefix(ctx->prog_type), ctx->generic_output_range.first, dst_reg->Indirect.Index, dst_reg->Register.Index - ctx->generic_output_range.array_id, ctx->outputs[j].override_no_wm ? "" : writemask);
else
snprintf(dsts[i], 255, "oblk.%s%d[%d]%s", get_stage_output_name_prefix(ctx->prog_type), ctx->generic_output_range.first, dst_reg->Register.Index - ctx->generic_output_range.array_id, ctx->outputs[j].override_no_wm ? "" : writemask);
dinfo->dst_override_no_wm[i] = ctx->outputs[j].override_no_wm;
} else if (ctx_indirect_outputs(ctx) && ctx->outputs[j].name == TGSI_SEMANTIC_PATCH) {
if (dst_reg->Register.Indirect)
snprintf(dsts[i], 255, "%sp%d[addr%d + %d]%s", get_stage_output_name_prefix(ctx->prog_type), ctx->patch_output_range.first, dst_reg->Indirect.Index, dst_reg->Register.Index - ctx->patch_output_range.array_id, ctx->outputs[j].override_no_wm ? "" : writemask);
else
snprintf(dsts[i], 255, "%sp%d[%d]%s", get_stage_output_name_prefix(ctx->prog_type), ctx->patch_output_range.first, dst_reg->Register.Index - ctx->patch_output_range.array_id, ctx->outputs[j].override_no_wm ? "" : writemask);
dinfo->dst_override_no_wm[i] = ctx->outputs[j].override_no_wm;
} else {
snprintf(dsts[i], 255, "%s%s", ctx->outputs[j].glsl_name, ctx->outputs[j].override_no_wm ? "" : writemask);
dinfo->dst_override_no_wm[i] = ctx->outputs[j].override_no_wm;
}
if (ctx->outputs[j].is_int) {
if (dinfo->dtypeprefix == TYPE_CONVERSION_NONE)
dinfo->dtypeprefix = FLOAT_BITS_TO_INT;
dinfo->dstconv = INT;
}
if (ctx->outputs[j].name == TGSI_SEMANTIC_PSIZE) {
dinfo->dstconv = FLOAT;
break;
}
}
}
}
}
else if (dst_reg->Register.File == TGSI_FILE_TEMPORARY) {
struct vrend_temp_range *range = find_temp_range(ctx, dst_reg->Register.Index);
if (!range)
return FALSE;
if (dst_reg->Register.Indirect) {
snprintf(dsts[i], 255, "temp%d[addr0 + %d]%s", range->first, dst_reg->Register.Index - range->first, writemask);
} else
snprintf(dsts[i], 255, "temp%d[%d]%s", range->first, dst_reg->Register.Index - range->first, writemask);
}
else if (dst_reg->Register.File == TGSI_FILE_IMAGE) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
if (ctx->info.indirect_files & (1 << TGSI_FILE_IMAGE)) {
int basearrayidx = lookup_image_array(ctx, dst_reg->Register.Index);
if (dst_reg->Register.Indirect) {
assert(dst_reg->Indirect.File == TGSI_FILE_ADDRESS);
snprintf(dsts[i], 255, "%simg%d[addr%d + %d]", cname, basearrayidx, dst_reg->Indirect.Index, dst_reg->Register.Index - basearrayidx);
} else
snprintf(dsts[i], 255, "%simg%d[%d]", cname, basearrayidx, dst_reg->Register.Index - basearrayidx);
} else
snprintf(dsts[i], 255, "%simg%d", cname, dst_reg->Register.Index);
} else if (dst_reg->Register.File == TGSI_FILE_BUFFER) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
if (ctx->info.indirect_files & (1 << TGSI_FILE_BUFFER)) {
bool atomic_ssbo = ctx->ssbo_atomic_mask & (1 << dst_reg->Register.Index);
const char *atomic_str = atomic_ssbo ? "atomic" : "";
int base = atomic_ssbo ? ctx->ssbo_atomic_array_base : ctx->ssbo_array_base;
if (dst_reg->Register.Indirect) {
snprintf(dsts[i], 255, "%sssboarr%s[addr%d+%d].%sssbocontents%d", cname, atomic_str, dst_reg->Indirect.Index, dst_reg->Register.Index - base, cname, base);
} else
snprintf(dsts[i], 255, "%sssboarr%s[%d].%sssbocontents%d", cname, atomic_str, dst_reg->Register.Index - base, cname, base);
} else
snprintf(dsts[i], 255, "%sssbocontents%d", cname, dst_reg->Register.Index);
} else if (dst_reg->Register.File == TGSI_FILE_MEMORY) {
snprintf(dsts[i], 255, "values");
} else if (dst_reg->Register.File == TGSI_FILE_ADDRESS) {
snprintf(dsts[i], 255, "addr%d", dst_reg->Register.Index);
}
if (dtype == TGSI_TYPE_DOUBLE) {
strcpy(fp64_dsts[i], dsts[i]);
snprintf(dsts[i], 255, "fp64_dst[%d]%s", i, fp64_writemask);
writemask[0] = 0;
}
}
return 0;
}
static void fill_blkarray(struct dump_ctx *ctx,
const struct tgsi_full_src_register *src,
char *blkarray)
{
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL)
strcpy(blkarray, "[gl_InvocationID]");
else {
if (src->Register.Dimension) {
if (src->Dimension.Indirect)
snprintf(blkarray, 32, "[addr%d + %d]", src->DimIndirect.Index, src->Dimension.Index);
else
snprintf(blkarray, 32, "[%d]", src->Dimension.Index);
} else
strcpy(blkarray, "[0]");
}
}
static int
get_source_info(struct dump_ctx *ctx,
const struct tgsi_full_instruction *inst,
struct source_info *sinfo,
char srcs[3][255], char src_swizzle0[10])
{
bool stprefix = false;
enum vrend_type_qualifier stypeprefix = TYPE_CONVERSION_NONE;
enum tgsi_opcode_type stype = tgsi_opcode_infer_src_type(inst->Instruction.Opcode);
if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED)
ctx->shader_req_bits |= SHADER_REQ_INTS;
if (stype == TGSI_TYPE_DOUBLE)
ctx->shader_req_bits |= SHADER_REQ_INTS | SHADER_REQ_FP64;
switch (stype) {
case TGSI_TYPE_DOUBLE:
stypeprefix = FLOAT_BITS_TO_UINT;
sinfo->svec4 = DVEC2;
stprefix = true;
break;
case TGSI_TYPE_UNSIGNED:
stypeprefix = FLOAT_BITS_TO_UINT;
sinfo->svec4 = UVEC4;
stprefix = true;
break;
case TGSI_TYPE_SIGNED:
stypeprefix = FLOAT_BITS_TO_INT;
sinfo->svec4 = IVEC4;
stprefix = true;
break;
default:
break;
}
for (uint32_t i = 0; i < inst->Instruction.NumSrcRegs; i++) {
const struct tgsi_full_src_register *src = &inst->Src[i];
char swizzle[8] = {0};
char prefix[6] = {0};
char arrayname[16] = {0};
char fp64_src[255];
int swz_idx = 0, pre_idx = 0;
boolean isfloatabsolute = src->Register.Absolute && stype != TGSI_TYPE_DOUBLE;
sinfo->override_no_wm[i] = false;
sinfo->override_no_cast[i] = false;
if (isfloatabsolute)
swizzle[swz_idx++] = ')';
if (src->Register.Negate)
prefix[pre_idx++] = '-';
if (isfloatabsolute)
strcpy(&prefix[pre_idx++], "abs(");
if (src->Register.Dimension) {
if (src->Dimension.Indirect) {
assert(src->DimIndirect.File == TGSI_FILE_ADDRESS);
sprintf(arrayname, "[addr%d]", src->DimIndirect.Index);
} else
sprintf(arrayname, "[%d]", src->Dimension.Index);
}
if (src->Register.SwizzleX != TGSI_SWIZZLE_X ||
src->Register.SwizzleY != TGSI_SWIZZLE_Y ||
src->Register.SwizzleZ != TGSI_SWIZZLE_Z ||
src->Register.SwizzleW != TGSI_SWIZZLE_W) {
swizzle[swz_idx++] = '.';
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleX);
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleY);
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleZ);
swizzle[swz_idx++] = get_swiz_char(src->Register.SwizzleW);
}
if (src->Register.File == TGSI_FILE_INPUT) {
for (uint32_t j = 0; j < ctx->num_inputs; j++)
if (ctx->inputs[j].first == src->Register.Index) {
if (ctx->key->color_two_side && ctx->inputs[j].name == TGSI_SEMANTIC_COLOR)
snprintf(srcs[i], 255, "%s(%s%s%d%s%s)", get_string(stypeprefix), prefix, "realcolor", ctx->inputs[j].sid, arrayname, swizzle);
else if (ctx->inputs[j].glsl_gl_block) {
/* GS input clipdist requires a conversion */
if (ctx->inputs[j].name == TGSI_SEMANTIC_CLIPDIST) {
create_swizzled_clipdist(ctx, srcs[i], src, j, true, get_string(stypeprefix), prefix, arrayname);
} else {
snprintf(srcs[i], 255, "%s(vec4(%sgl_in%s.%s)%s)", get_string(stypeprefix), prefix, arrayname, ctx->inputs[j].glsl_name, swizzle);
}
}
else if (ctx->inputs[j].name == TGSI_SEMANTIC_PRIMID)
snprintf(srcs[i], 255, "%s(vec4(intBitsToFloat(%s)))", get_string(stypeprefix), ctx->inputs[j].glsl_name);
else if (ctx->inputs[j].name == TGSI_SEMANTIC_FACE)
snprintf(srcs[i], 255, "%s(%s ? 1.0 : -1.0)", get_string(stypeprefix), ctx->inputs[j].glsl_name);
else if (ctx->inputs[j].name == TGSI_SEMANTIC_CLIPDIST) {
create_swizzled_clipdist(ctx, srcs[i], src, j, false, get_string(stypeprefix), prefix, arrayname);
} else {
enum vrend_type_qualifier srcstypeprefix = stypeprefix;
if ((stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_SIGNED) &&
ctx->inputs[j].is_int)
srcstypeprefix = TYPE_CONVERSION_NONE;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE && i == 1) {
snprintf(srcs[i], 255, "floatBitsToInt(%s%s%s%s)", prefix, ctx->inputs[j].glsl_name, arrayname, swizzle);
} else if (ctx->inputs[j].name == TGSI_SEMANTIC_GENERIC &&
ctx_indirect_inputs(ctx)) {
char blkarray[32] = {};
fill_blkarray(ctx, src, blkarray);
if (src->Register.Indirect)
snprintf(srcs[i], 255, "%s(%sblk%s.%s%d[addr%d + %d]%s)", get_string(srcstypeprefix), prefix, blkarray, get_stage_input_name_prefix(ctx, ctx->prog_type), ctx->generic_input_range.first, src->Indirect.Index, src->Register.Index - ctx->generic_input_range.array_id, ctx->inputs[j].is_int ? "" : swizzle);
else
snprintf(srcs[i], 255, "%s(%sblk%s.%s%d[%d]%s)", get_string(srcstypeprefix), prefix, blkarray, get_stage_input_name_prefix(ctx, ctx->prog_type), ctx->generic_input_range.first, src->Register.Index - ctx->generic_input_range.array_id, ctx->inputs[j].is_int ? "" : swizzle);
} else if (ctx->inputs[j].name == TGSI_SEMANTIC_PATCH &&
ctx_indirect_inputs(ctx)) {
if (src->Register.Indirect)
snprintf(srcs[i], 255, "%s(%s%sp%d[addr%d + %d]%s)", get_string(srcstypeprefix), prefix, get_stage_input_name_prefix(ctx, ctx->prog_type), ctx->patch_input_range.first, src->Indirect.Index, src->Register.Index - ctx->patch_input_range.array_id, ctx->inputs[j].is_int ? "" : swizzle);
else
snprintf(srcs[i], 255, "%s(%s%sp%d[%d]%s)", get_string(srcstypeprefix), prefix, get_stage_input_name_prefix(ctx, ctx->prog_type), ctx->patch_input_range.first, src->Register.Index - ctx->patch_input_range.array_id, ctx->inputs[j].is_int ? "" : swizzle);
} else
snprintf(srcs[i], 255, "%s(%s%s%s%s)", get_string(srcstypeprefix), prefix, ctx->inputs[j].glsl_name, arrayname, ctx->inputs[j].is_int ? "" : swizzle);
}
if ((inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_CENTROID) &&
i == 0) {
snprintf(srcs[0], 255, "%s", ctx->inputs[j].glsl_name);
snprintf(src_swizzle0, 10, "%s", swizzle);
}
sinfo->override_no_wm[i] = ctx->inputs[j].override_no_wm;
break;
}
} else if (src->Register.File == TGSI_FILE_OUTPUT) {
for (uint32_t j = 0; j < ctx->num_outputs; j++) {
if (ctx->outputs[j].first == src->Register.Index) {
if (inst->Instruction.Opcode == TGSI_OPCODE_FBFETCH) {
ctx->outputs[j].fbfetch_used = true;
ctx->shader_req_bits |= SHADER_REQ_FBFETCH;
}
enum vrend_type_qualifier srcstypeprefix = stypeprefix;
if (stype == TGSI_TYPE_UNSIGNED && ctx->outputs[j].is_int)
srcstypeprefix = TYPE_CONVERSION_NONE;
if (ctx->outputs[j].glsl_gl_block) {
if (ctx->outputs[j].name == TGSI_SEMANTIC_CLIPDIST) {
snprintf(srcs[i], 255, "clip_dist_temp[%d]", ctx->outputs[j].sid);
}
} else if (ctx->outputs[j].name == TGSI_SEMANTIC_GENERIC &&
ctx_indirect_outputs(ctx)) {
char blkarray[32] = {};
fill_blkarray(ctx, src, blkarray);
if (src->Register.Indirect)
snprintf(srcs[i], 255, "%s(%soblk%s.%s%d[addr%d + %d]%s)", get_string(srcstypeprefix), prefix, blkarray, get_stage_output_name_prefix(ctx->prog_type), ctx->generic_output_range.first, src->Indirect.Index, src->Register.Index - ctx->generic_output_range.array_id, ctx->outputs[j].is_int ? "" : swizzle);
else
snprintf(srcs[i], 255, "%s(%soblk%s.%s%d[%d]%s)", get_string(srcstypeprefix), prefix, blkarray, get_stage_output_name_prefix(ctx->prog_type), ctx->generic_output_range.first, src->Register.Index - ctx->generic_output_range.array_id, ctx->outputs[j].is_int ? "" : swizzle);
} else if (ctx->outputs[j].name == TGSI_SEMANTIC_PATCH &&
ctx_indirect_outputs(ctx)) {
if (src->Register.Indirect)
snprintf(srcs[i], 255, "%s(%s%sp%d[addr%d + %d]%s)", get_string(srcstypeprefix), prefix, get_stage_output_name_prefix(ctx->prog_type), ctx->patch_output_range.first, src->Indirect.Index, src->Register.Index - ctx->patch_output_range.array_id, ctx->outputs[j].is_int ? "" : swizzle);
else
snprintf(srcs[i], 255, "%s(%s%sp%d[%d]%s)", get_string(srcstypeprefix), prefix, get_stage_output_name_prefix(ctx->prog_type), ctx->patch_output_range.first, src->Register.Index - ctx->patch_output_range.array_id, ctx->outputs[j].is_int ? "" : swizzle);
} else {
snprintf(srcs[i], 255, "%s(%s%s%s%s)", get_string(srcstypeprefix), prefix, ctx->outputs[j].glsl_name, arrayname, ctx->outputs[j].is_int ? "" : swizzle);
}
}
}
} else if (src->Register.File == TGSI_FILE_TEMPORARY) {
struct vrend_temp_range *range = find_temp_range(ctx, src->Register.Index);
if (!range)
return FALSE;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE && i == 1) {
stprefix = true;
stypeprefix = FLOAT_BITS_TO_INT;
}
if (src->Register.Indirect) {
assert(src->Indirect.File == TGSI_FILE_ADDRESS);
snprintf(srcs[i], 255, "%s%c%stemp%d[addr%d + %d]%s%c", get_string(stypeprefix), stprefix ? '(' : ' ', prefix, range->first, src->Indirect.Index, src->Register.Index - range->first, swizzle, stprefix ? ')' : ' ');
} else
snprintf(srcs[i], 255, "%s%c%stemp%d[%d]%s%c", get_string(stypeprefix), stprefix ? '(' : ' ', prefix, range->first, src->Register.Index - range->first, swizzle, stprefix ? ')' : ' ');
} else if (src->Register.File == TGSI_FILE_CONSTANT) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
int dim = 0;
if (src->Register.Dimension && src->Dimension.Index != 0) {
dim = src->Dimension.Index;
if (src->Dimension.Indirect) {
assert(src->DimIndirect.File == TGSI_FILE_ADDRESS);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
if (src->Register.Indirect) {
assert(src->Indirect.File == TGSI_FILE_ADDRESS);
snprintf(srcs[i], 255, "%s(%s%suboarr[addr%d].ubocontents[addr%d + %d]%s)", get_string(stypeprefix), prefix, cname, src->DimIndirect.Index, src->Indirect.Index, src->Register.Index, swizzle);
} else
snprintf(srcs[i], 255, "%s(%s%suboarr[addr%d].ubocontents[%d]%s)", get_string(stypeprefix), prefix, cname, src->DimIndirect.Index, src->Register.Index, swizzle);
} else {
if (ctx->info.dimension_indirect_files & (1 << TGSI_FILE_CONSTANT)) {
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%s(%s%suboarr[%d].ubocontents[addr%d + %d]%s)", get_string(stypeprefix), prefix, cname, dim - ctx->ubo_base, src->Indirect.Index, src->Register.Index, swizzle);
} else
snprintf(srcs[i], 255, "%s(%s%suboarr[%d].ubocontents[%d]%s)", get_string(stypeprefix), prefix, cname, dim - ctx->ubo_base, src->Register.Index, swizzle);
} else {
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%s(%s%subo%dcontents[addr0 + %d]%s)", get_string(stypeprefix), prefix, cname, dim, src->Register.Index, swizzle);
} else
snprintf(srcs[i], 255, "%s(%s%subo%dcontents[%d]%s)", get_string(stypeprefix), prefix, cname, dim, src->Register.Index, swizzle);
}
}
} else {
enum vrend_type_qualifier csp = TYPE_CONVERSION_NONE;
ctx->shader_req_bits |= SHADER_REQ_INTS;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE && i == 1)
csp = IVEC4;
else if (stype == TGSI_TYPE_FLOAT || stype == TGSI_TYPE_UNTYPED)
csp = UINT_BITS_TO_FLOAT;
else if (stype == TGSI_TYPE_SIGNED)
csp = IVEC4;
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%s%s(%sconst%d[addr0 + %d]%s)", prefix, get_string(csp), cname, dim, src->Register.Index, swizzle);
} else
snprintf(srcs[i], 255, "%s%s(%sconst%d[%d]%s)", prefix, get_string(csp), cname, dim, src->Register.Index, swizzle);
}
} else if (src->Register.File == TGSI_FILE_SAMPLER) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
if (ctx->info.indirect_files & (1 << TGSI_FILE_SAMPLER)) {
int basearrayidx = lookup_sampler_array(ctx, src->Register.Index);
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%ssamp%d[addr%d+%d]%s", cname, basearrayidx, src->Indirect.Index, src->Register.Index - basearrayidx, swizzle);
} else {
snprintf(srcs[i], 255, "%ssamp%d[%d]%s", cname, basearrayidx, src->Register.Index - basearrayidx, swizzle);
}
} else {
snprintf(srcs[i], 255, "%ssamp%d%s", cname, src->Register.Index, swizzle);
}
sinfo->sreg_index = src->Register.Index;
} else if (src->Register.File == TGSI_FILE_IMAGE) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
if (ctx->info.indirect_files & (1 << TGSI_FILE_IMAGE)) {
int basearrayidx = lookup_image_array(ctx, src->Register.Index);
if (src->Register.Indirect) {
assert(src->Indirect.File == TGSI_FILE_ADDRESS);
snprintf(srcs[i], 255, "%simg%d[addr%d + %d]", cname, basearrayidx, src->Indirect.Index, src->Register.Index - basearrayidx);
} else
snprintf(srcs[i], 255, "%simg%d[%d]", cname, basearrayidx, src->Register.Index - basearrayidx);
} else
snprintf(srcs[i], 255, "%simg%d%s", cname, src->Register.Index, swizzle);
sinfo->sreg_index = src->Register.Index;
} else if (src->Register.File == TGSI_FILE_BUFFER) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
if (ctx->info.indirect_files & (1 << TGSI_FILE_BUFFER)) {
bool atomic_ssbo = ctx->ssbo_atomic_mask & (1 << src->Register.Index);
const char *atomic_str = atomic_ssbo ? "atomic" : "";
int base = atomic_ssbo ? ctx->ssbo_atomic_array_base : ctx->ssbo_array_base;
if (src->Register.Indirect) {
snprintf(srcs[i], 255, "%sssboarr%s[addr%d+%d].%sssbocontents%d%s", cname, atomic_str, src->Indirect.Index, src->Register.Index - base, cname, base, swizzle);
} else {
snprintf(srcs[i], 255, "%sssboarr%s[%d].%sssbocontents%d%s", cname, atomic_str, src->Register.Index - base, cname, base, swizzle);
}
} else {
snprintf(srcs[i], 255, "%sssbocontents%d%s", cname, src->Register.Index, swizzle);
}
sinfo->sreg_index = src->Register.Index;
} else if (src->Register.File == TGSI_FILE_MEMORY) {
snprintf(srcs[i], 255, "values");
sinfo->sreg_index = src->Register.Index;
} else if (src->Register.File == TGSI_FILE_IMMEDIATE) {
if (src->Register.Index >= (int)ARRAY_SIZE(ctx->imm)) {
fprintf(stderr, "Immediate exceeded, max is %lu\n", ARRAY_SIZE(ctx->imm));
return false;
}
struct immed *imd = &ctx->imm[src->Register.Index];
int idx = src->Register.SwizzleX;
char temp[48];
enum vrend_type_qualifier vtype = VEC4;
enum vrend_type_qualifier imm_stypeprefix = stypeprefix;
if ((inst->Instruction.Opcode == TGSI_OPCODE_TG4 && i == 1) ||
(inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE && i == 1))
stype = TGSI_TYPE_SIGNED;
if (imd->type == TGSI_IMM_UINT32 || imd->type == TGSI_IMM_INT32) {
if (imd->type == TGSI_IMM_UINT32)
vtype = UVEC4;
else
vtype = IVEC4;
if (stype == TGSI_TYPE_UNSIGNED && imd->type == TGSI_IMM_INT32)
imm_stypeprefix = UVEC4;
else if (stype == TGSI_TYPE_SIGNED && imd->type == TGSI_IMM_UINT32)
imm_stypeprefix = IVEC4;
else if (stype == TGSI_TYPE_FLOAT || stype == TGSI_TYPE_UNTYPED) {
if (imd->type == TGSI_IMM_INT32)
imm_stypeprefix = INT_BITS_TO_FLOAT;
else
imm_stypeprefix = UINT_BITS_TO_FLOAT;
} else if (stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_SIGNED)
imm_stypeprefix = TYPE_CONVERSION_NONE;
} else if (imd->type == TGSI_IMM_FLOAT64) {
vtype = UVEC4;
if (stype == TGSI_TYPE_DOUBLE)
imm_stypeprefix = TYPE_CONVERSION_NONE;
else
imm_stypeprefix = UINT_BITS_TO_FLOAT;
}
/* build up a vec4 of immediates */
snprintf(srcs[i], 255, "%s(%s%s(", get_string(imm_stypeprefix), prefix, get_string(vtype));
for (uint32_t j = 0; j < 4; j++) {
if (j == 0)
idx = src->Register.SwizzleX;
else if (j == 1)
idx = src->Register.SwizzleY;
else if (j == 2)
idx = src->Register.SwizzleZ;
else if (j == 3)
idx = src->Register.SwizzleW;
if (inst->Instruction.Opcode == TGSI_OPCODE_TG4 && i == 1 && j == 0) {
if (imd->val[idx].ui > 0) {
sinfo->tg4_has_component = true;
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
}
}
switch (imd->type) {
case TGSI_IMM_FLOAT32:
if (isinf(imd->val[idx].f) || isnan(imd->val[idx].f)) {
ctx->shader_req_bits |= SHADER_REQ_INTS;
snprintf(temp, 48, "uintBitsToFloat(%uU)", imd->val[idx].ui);
} else
snprintf(temp, 25, "%.8g", imd->val[idx].f);
break;
case TGSI_IMM_UINT32:
snprintf(temp, 25, "%uU", imd->val[idx].ui);
break;
case TGSI_IMM_INT32:
snprintf(temp, 25, "%d", imd->val[idx].i);
break;
case TGSI_IMM_FLOAT64:
snprintf(temp, 48, "%uU", imd->val[idx].ui);
break;
default:
fprintf(stderr, "unhandled imm type: %x\n", imd->type);
return false;
}
strncat(srcs[i], temp, 255);
if (j < 3)
strcat(srcs[i], ",");
else {
snprintf(temp, 4, "))%c", isfloatabsolute ? ')' : 0);
strncat(srcs[i], temp, 255);
}
}
} else if (src->Register.File == TGSI_FILE_SYSTEM_VALUE) {
for (uint32_t j = 0; j < ctx->num_system_values; j++)
if (ctx->system_values[j].first == src->Register.Index) {
if (ctx->system_values[j].name == TGSI_SEMANTIC_VERTEXID ||
ctx->system_values[j].name == TGSI_SEMANTIC_INSTANCEID ||
ctx->system_values[j].name == TGSI_SEMANTIC_PRIMID ||
ctx->system_values[j].name == TGSI_SEMANTIC_VERTICESIN ||
ctx->system_values[j].name == TGSI_SEMANTIC_INVOCATIONID ||
ctx->system_values[j].name == TGSI_SEMANTIC_SAMPLEID) {
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE && i == 1)
snprintf(srcs[i], 255, "ivec4(%s)", ctx->system_values[j].glsl_name);
else
snprintf(srcs[i], 255, "%s(vec4(intBitsToFloat(%s)))", get_string(stypeprefix), ctx->system_values[j].glsl_name);
} else if (ctx->system_values[j].name == TGSI_SEMANTIC_HELPER_INVOCATION) {
snprintf(srcs[i], 255, "uvec4(%s)", ctx->system_values[j].glsl_name);
} else if (ctx->system_values[j].name == TGSI_SEMANTIC_TESSINNER ||
ctx->system_values[j].name == TGSI_SEMANTIC_TESSOUTER) {
snprintf(srcs[i], 255, "%s(vec4(%s[%d], %s[%d], %s[%d], %s[%d]))",
prefix,
ctx->system_values[j].glsl_name, src->Register.SwizzleX,
ctx->system_values[j].glsl_name, src->Register.SwizzleY,
ctx->system_values[j].glsl_name, src->Register.SwizzleZ,
ctx->system_values[j].glsl_name, src->Register.SwizzleW);
} else if (ctx->system_values[j].name == TGSI_SEMANTIC_SAMPLEPOS ||
ctx->system_values[j].name == TGSI_SEMANTIC_TESSCOORD) {
snprintf(srcs[i], 255, "%s(vec4(%s.%c, %s.%c, %s.%c, %s.%c))",
prefix,
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleX),
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleY),
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleZ),
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleW));
} else if (ctx->system_values[j].name == TGSI_SEMANTIC_GRID_SIZE ||
ctx->system_values[j].name == TGSI_SEMANTIC_THREAD_ID ||
ctx->system_values[j].name == TGSI_SEMANTIC_BLOCK_ID) {
snprintf(srcs[i], 255, "uvec4(%s.%c, %s.%c, %s.%c, %s.%c)",
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleX),
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleY),
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleZ),
ctx->system_values[j].glsl_name, get_swiz_char(src->Register.SwizzleW));
sinfo->override_no_cast[i] = true;
} else if (ctx->system_values[j].name == TGSI_SEMANTIC_SAMPLEMASK) {
const char *vec_type = "ivec4";
if (ctx->cfg->use_gles &&
(inst->Instruction.Opcode == TGSI_OPCODE_AND) &&
(stype == TGSI_TYPE_UNSIGNED))
vec_type = "uvec4";
ctx->shader_req_bits |= SHADER_REQ_SAMPLE_SHADING | SHADER_REQ_INTS;
snprintf(srcs[i], 255, "%s(%s, %s, %s, %s)",
vec_type,
src->Register.SwizzleX == TGSI_SWIZZLE_X ? ctx->system_values[j].glsl_name : "0",
src->Register.SwizzleY == TGSI_SWIZZLE_X ? ctx->system_values[j].glsl_name : "0",
src->Register.SwizzleZ == TGSI_SWIZZLE_X ? ctx->system_values[j].glsl_name : "0",
src->Register.SwizzleW == TGSI_SWIZZLE_X ? ctx->system_values[j].glsl_name : "0");
} else
snprintf(srcs[i], 255, "%s%s", prefix, ctx->system_values[j].glsl_name);
sinfo->override_no_wm[i] = ctx->system_values[j].override_no_wm;
break;
}
}
if (stype == TGSI_TYPE_DOUBLE) {
boolean isabsolute = src->Register.Absolute;
char buf[512];
strcpy(fp64_src, srcs[i]);
snprintf(srcs[i], 255, "fp64_src[%d]", i);
snprintf(buf, 255, "%s.x = %spackDouble2x32(uvec2(%s%s))%s;\n", srcs[i], isabsolute ? "abs(" : "", fp64_src, swizzle, isabsolute ? ")" : "");
EMIT_BUF_WITH_RET(ctx, buf);
}
}
return 0;
}
static boolean
iter_instruction(struct tgsi_iterate_context *iter,
struct tgsi_full_instruction *inst)
{
struct dump_ctx *ctx = (struct dump_ctx *)iter;
struct dest_info dinfo = { 0 };
struct source_info sinfo = { 0 };
char srcs[4][255], dsts[3][255], buf[512];
char fp64_dsts[3][255];
uint instno = ctx->instno++;
char writemask[6] = {0};
char *sret;
int ret;
char src_swizzle0[10];
sinfo.svec4 = VEC4;
if (ctx->prog_type == -1)
ctx->prog_type = iter->processor.Processor;
if (instno == 0) {
sret = add_str_to_glsl_main(ctx, "void main(void)\n{\n");
if (!sret)
return FALSE;
if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
ret = emit_color_select(ctx);
if (ret)
return FALSE;
}
if (ctx->so)
prepare_so_movs(ctx);
}
ret = get_destination_info(ctx, inst, &dinfo, dsts, fp64_dsts, writemask);
if (ret)
return FALSE;
ret = get_source_info(ctx, inst, &sinfo, srcs, src_swizzle0);
if (ret)
return FALSE;
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_SQRT:
case TGSI_OPCODE_DSQRT:
snprintf(buf, 255, "%s = sqrt(vec4(%s))%s;\n", dsts[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LRP:
snprintf(buf, 255, "%s = mix(vec4(%s), vec4(%s), vec4(%s))%s;\n", dsts[0], srcs[2], srcs[1], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DP2:
snprintf(buf, 255, "%s = %s(dot(vec2(%s), vec2(%s)));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DP3:
snprintf(buf, 255, "%s = %s(dot(vec3(%s), vec3(%s)));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DP4:
snprintf(buf, 255, "%s = %s(dot(vec4(%s), vec4(%s)));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DPH:
snprintf(buf, 255, "%s = %s(dot(vec4(vec3(%s), 1.0), vec4(%s)));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MAX:
case TGSI_OPCODE_DMAX:
case TGSI_OPCODE_IMAX:
case TGSI_OPCODE_UMAX:
snprintf(buf, 255, "%s = %s(%s(max(%s, %s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MIN:
case TGSI_OPCODE_DMIN:
case TGSI_OPCODE_IMIN:
case TGSI_OPCODE_UMIN:
snprintf(buf, 255, "%s = %s(%s(min(%s, %s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ABS:
case TGSI_OPCODE_IABS:
case TGSI_OPCODE_DABS:
emit_op1("abs");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_KILL_IF:
snprintf(buf, 255, "if (any(lessThan(%s, vec4(0.0))))\ndiscard;\n", srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_IF:
case TGSI_OPCODE_UIF:
snprintf(buf, 255, "if (any(bvec4(%s))) {\n", srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->indent_level++;
break;
case TGSI_OPCODE_ELSE:
snprintf(buf, 255, "} else {\n");
ctx->indent_level--;
EMIT_BUF_WITH_RET(ctx, buf);
ctx->indent_level++;
break;
case TGSI_OPCODE_ENDIF:
snprintf(buf, 255, "}\n");
ctx->indent_level--;
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_KILL:
snprintf(buf, 255, "discard;\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DST:
snprintf(buf, 512, "%s = vec4(1.0, %s.y * %s.y, %s.z, %s.w);\n", dsts[0],
srcs[0], srcs[1], srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LIT:
snprintf(buf, 512, "%s = %s(vec4(1.0, max(%s.x, 0.0), step(0.0, %s.x) * pow(max(0.0, %s.y), clamp(%s.w, -128.0, 128.0)), 1.0)%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[0], srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_EX2:
emit_op1("exp2");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LG2:
emit_op1("log2");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_EXP:
snprintf(buf, 512, "%s = %s(vec4(pow(2.0, floor(%s.x)), %s.x - floor(%s.x), exp2(%s.x), 1.0)%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[0], srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_LOG:
snprintf(buf, 512, "%s = %s(vec4(floor(log2(%s.x)), %s.x / pow(2.0, floor(log2(%s.x))), log2(%s.x), 1.0)%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[0], srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_COS:
emit_op1("cos");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SIN:
emit_op1("sin");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SCS:
snprintf(buf, 255, "%s = %s(vec4(cos(%s.x), sin(%s.x), 0, 1)%s);\n", dsts[0], get_string(dinfo.dstconv),
srcs[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DDX:
emit_op1("dFdx");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DDY:
emit_op1("dFdy");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DDX_FINE:
ctx->shader_req_bits |= SHADER_REQ_DERIVATIVE_CONTROL;
emit_op1("dFdxFine");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DDY_FINE:
ctx->shader_req_bits |= SHADER_REQ_DERIVATIVE_CONTROL;
emit_op1("dFdyFine");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_RCP:
snprintf(buf, 255, "%s = %s(1.0/(%s));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DRCP:
snprintf(buf, 255, "%s = %s(1.0LF/(%s));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_FLR:
emit_op1("floor");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ROUND:
emit_op1("round");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISSG:
emit_op1("sign");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_CEIL:
emit_op1("ceil");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_FRC:
case TGSI_OPCODE_DFRAC:
emit_op1("fract");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_TRUNC:
emit_op1("trunc");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SSG:
emit_op1("sign");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_RSQ:
case TGSI_OPCODE_DRSQ:
snprintf(buf, 255, "%s = %s(inversesqrt(%s.x));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_FBFETCH:
case TGSI_OPCODE_MOV:
snprintf(buf, 255, "%s = %s(%s(%s%s));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], sinfo.override_no_wm[0] ? "" : writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ADD:
case TGSI_OPCODE_DADD:
emit_arit_op2("+");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UADD:
snprintf(buf, 512, "%s = %s(%s(ivec4((uvec4(%s) + uvec4(%s))))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SUB:
emit_arit_op2("-");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MUL:
case TGSI_OPCODE_DMUL:
emit_arit_op2("*");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DIV:
case TGSI_OPCODE_DDIV:
emit_arit_op2("/");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UMUL:
snprintf(buf, 512, "%s = %s(%s((uvec4(%s) * uvec4(%s)))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UMOD:
snprintf(buf, 255, "%s = %s(%s((uvec4(%s) %% uvec4(%s)))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_IDIV:
snprintf(buf, 255, "%s = %s(%s((ivec4(%s) / ivec4(%s)))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UDIV:
snprintf(buf, 255, "%s = %s(%s((uvec4(%s) / uvec4(%s)))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISHR:
case TGSI_OPCODE_USHR:
emit_arit_op2(">>");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SHL:
emit_arit_op2("<<");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MAD:
snprintf(buf, 255, "%s = %s((%s * %s + %s)%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1], srcs[2], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UMAD:
case TGSI_OPCODE_DMAD:
snprintf(buf, 512, "%s = %s(%s((%s * %s + %s)%s));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], srcs[2], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_OR:
emit_arit_op2("|");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_AND:
emit_arit_op2("&");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_XOR:
emit_arit_op2("^");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MOD:
emit_arit_op2("%");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXB2:
case TGSI_OPCODE_TXL2:
case TGSI_OPCODE_TXD:
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_TG4:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_LODQ:
ret = translate_tex(ctx, inst, &sinfo, &dinfo, srcs, dsts, writemask);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_TXQ:
ret = emit_txq(ctx, inst, sinfo.sreg_index, srcs, dsts, writemask);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_TXQS:
ret = emit_txqs(ctx, inst, sinfo.sreg_index, srcs, dsts);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_I2F:
snprintf(buf, 255, "%s = %s(ivec4(%s)%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_I2D:
snprintf(buf, 255, "%s = %s(ivec4(%s));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_D2F:
snprintf(buf, 255, "%s = %s(%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_U2F:
snprintf(buf, 255, "%s = %s(uvec4(%s)%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_U2D:
snprintf(buf, 255, "%s = %s(uvec4(%s));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_F2I:
snprintf(buf, 255, "%s = %s(%s(ivec4(%s))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_D2I:
snprintf(buf, 255, "%s = %s(%s(%s(%s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), get_string(dinfo.idstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_F2U:
snprintf(buf, 255, "%s = %s(%s(uvec4(%s))%s);\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_D2U:
snprintf(buf, 255, "%s = %s(%s(%s(%s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), get_string(dinfo.udstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_F2D:
snprintf(buf, 255, "%s = %s(%s(%s));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_NOT:
snprintf(buf, 255, "%s = %s(uintBitsToFloat(~(uvec4(%s))));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_INEG:
snprintf(buf, 255, "%s = %s(intBitsToFloat(-(ivec4(%s))));\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_DNEG:
snprintf(buf, 255, "%s = %s(-%s);\n", dsts[0], get_string(dinfo.dstconv), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SEQ:
emit_compare("equal");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_USEQ:
case TGSI_OPCODE_FSEQ:
case TGSI_OPCODE_DSEQ:
if (inst->Instruction.Opcode == TGSI_OPCODE_DSEQ)
strcpy(writemask, ".x");
emit_ucompare("equal");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SLT:
emit_compare("lessThan");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_USLT:
case TGSI_OPCODE_FSLT:
case TGSI_OPCODE_DSLT:
if (inst->Instruction.Opcode == TGSI_OPCODE_DSLT)
strcpy(writemask, ".x");
emit_ucompare("lessThan");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SNE:
emit_compare("notEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_USNE:
case TGSI_OPCODE_FSNE:
case TGSI_OPCODE_DSNE:
if (inst->Instruction.Opcode == TGSI_OPCODE_DSNE)
strcpy(writemask, ".x");
emit_ucompare("notEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_SGE:
emit_compare("greaterThanEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_USGE:
case TGSI_OPCODE_FSGE:
case TGSI_OPCODE_DSGE:
if (inst->Instruction.Opcode == TGSI_OPCODE_DSGE)
strcpy(writemask, ".x");
emit_ucompare("greaterThanEqual");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_POW:
snprintf(buf, 255, "%s = %s(pow(%s, %s));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_CMP:
snprintf(buf, 255, "%s = mix(%s, %s, greaterThanEqual(%s, vec4(0.0)))%s;\n", dsts[0], srcs[1], srcs[2], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UCMP:
snprintf(buf, 512, "%s = mix(%s, %s, notEqual(floatBitsToUint(%s), uvec4(0.0)))%s;\n", dsts[0], srcs[2], srcs[1], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_END:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
if (handle_vertex_proc_exit(ctx) == FALSE)
return FALSE;
} else if (iter->processor.Processor == TGSI_PROCESSOR_TESS_CTRL) {
ret = emit_clip_dist_movs(ctx);
if (ret)
return FALSE;
} else if (iter->processor.Processor == TGSI_PROCESSOR_TESS_EVAL) {
if (ctx->so && !ctx->key->gs_present)
if (emit_so_movs(ctx))
return FALSE;
ret = emit_clip_dist_movs(ctx);
if (ret)
return FALSE;
if (!ctx->key->gs_present) {
ret = emit_prescale(ctx);
if (ret)
return FALSE;
}
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (handle_fragment_proc_exit(ctx) == FALSE)
return FALSE;
}
sret = add_str_to_glsl_main(ctx, "}\n");
if (!sret)
return FALSE;
break;
case TGSI_OPCODE_RET:
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX) {
if (handle_vertex_proc_exit(ctx) == FALSE)
return FALSE;
} else if (iter->processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
if (handle_fragment_proc_exit(ctx) == FALSE)
return FALSE;
}
EMIT_BUF_WITH_RET(ctx, "return;\n");
break;
case TGSI_OPCODE_ARL:
snprintf(buf, 255, "%s = int(floor(%s)%s);\n", dsts[0], srcs[0], writemask);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_UARL:
snprintf(buf, 255, "%s = int(%s);\n", dsts[0], srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_XPD:
snprintf(buf, 255, "%s = %s(cross(vec3(%s), vec3(%s)));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_BGNLOOP:
snprintf(buf, 255, "do {\n");
EMIT_BUF_WITH_RET(ctx, buf);
ctx->indent_level++;
break;
case TGSI_OPCODE_ENDLOOP:
ctx->indent_level--;
snprintf(buf, 255, "} while(true);\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_BRK:
snprintf(buf, 255, "break;\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_EMIT: {
struct immed *imd = &ctx->imm[(inst->Src[0].Register.Index)];
if (ctx->so && ctx->key->gs_present) {
emit_so_movs(ctx);
}
ret = emit_clip_dist_movs(ctx);
if (ret)
return FALSE;
ret = emit_prescale(ctx);
if (ret)
return FALSE;
if (imd->val[inst->Src[0].Register.SwizzleX].ui > 0) {
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
snprintf(buf, 255, "EmitStreamVertex(%d);\n", imd->val[inst->Src[0].Register.SwizzleX].ui);
} else
snprintf(buf, 255, "EmitVertex();\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
}
case TGSI_OPCODE_ENDPRIM: {
struct immed *imd = &ctx->imm[(inst->Src[0].Register.Index)];
if (imd->val[inst->Src[0].Register.SwizzleX].ui > 0) {
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
snprintf(buf, 255, "EndStreamPrimitive(%d);\n", imd->val[inst->Src[0].Register.SwizzleX].ui);
} else
snprintf(buf, 255, "EndPrimitive();\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
}
case TGSI_OPCODE_INTERP_CENTROID:
snprintf(buf, 255, "%s = %s(%s(vec4(interpolateAtCentroid(%s))%s));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], src_swizzle0);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_INTERP_SAMPLE:
snprintf(buf, 255, "%s = %s(%s(vec4(interpolateAtSample(%s, %s.x))%s));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], src_swizzle0);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_INTERP_OFFSET:
snprintf(buf, 255, "%s = %s(%s(vec4(interpolateAtOffset(%s, %s.xy))%s));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], src_swizzle0);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_UMUL_HI:
snprintf(buf, 255, "umulExtended(%s, %s, umul_temp, mul_utemp);\n", srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
snprintf(buf, 255, "%s = %s(%s(umul_temp));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix));
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
ctx->write_mul_utemp = true;
break;
case TGSI_OPCODE_IMUL_HI:
snprintf(buf, 255, "imulExtended(%s, %s, imul_temp, mul_itemp);\n", srcs[0], srcs[1]);
EMIT_BUF_WITH_RET(ctx, buf);
snprintf(buf, 255, "%s = %s(%s(imul_temp));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix));
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
ctx->write_mul_itemp = true;
break;
case TGSI_OPCODE_IBFE:
snprintf(buf, 255, "%s = %s(%s(bitfieldExtract(%s, int(%s.x), int(%s.x))));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], srcs[2]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_UBFE:
snprintf(buf, 255, "%s = %s(%s(bitfieldExtract(%s, int(%s.x), int(%s.x))));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0], srcs[1], srcs[2]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_BFI:
snprintf(buf, 255, "%s = %s(uintBitsToFloat(bitfieldInsert(%s, %s, int(%s), int(%s))));\n", dsts[0], get_string(dinfo.dstconv), srcs[0], srcs[1], srcs[2], srcs[3]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_BREV:
snprintf(buf, 255, "%s = %s(%s(bitfieldReverse(%s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_POPC:
snprintf(buf, 255, "%s = %s(%s(bitCount(%s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_LSB:
snprintf(buf, 255, "%s = %s(%s(findLSB(%s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_IMSB:
case TGSI_OPCODE_UMSB:
snprintf(buf, 255, "%s = %s(%s(findMSB(%s)));\n", dsts[0], get_string(dinfo.dstconv), get_string(dinfo.dtypeprefix), srcs[0]);
EMIT_BUF_WITH_RET(ctx, buf);
ctx->shader_req_bits |= SHADER_REQ_GPU_SHADER5;
break;
case TGSI_OPCODE_BARRIER:
snprintf(buf, 255, "barrier();\n");
EMIT_BUF_WITH_RET(ctx, buf);
break;
case TGSI_OPCODE_MEMBAR: {
struct immed *imd = &ctx->imm[(inst->Src[0].Register.Index)];
uint32_t val = imd->val[inst->Src[0].Register.SwizzleX].ui;
uint32_t all_val = (TGSI_MEMBAR_SHADER_BUFFER |
TGSI_MEMBAR_ATOMIC_BUFFER |
TGSI_MEMBAR_SHADER_IMAGE |
TGSI_MEMBAR_SHARED);
if (val & TGSI_MEMBAR_THREAD_GROUP) {
snprintf(buf, 255, "groupMemoryBarrier();\n");
EMIT_BUF_WITH_RET(ctx, buf);
} else {
if ((val & all_val) == all_val) {
snprintf(buf, 255, "memoryBarrier();\n");
EMIT_BUF_WITH_RET(ctx, buf);
} else {
if (val & TGSI_MEMBAR_SHADER_BUFFER) {
snprintf(buf, 255, "memoryBarrierBuffer();\n");
EMIT_BUF_WITH_RET(ctx, buf);
}
if (val & TGSI_MEMBAR_ATOMIC_BUFFER) {
snprintf(buf, 255, "memoryBarrierAtomic();\n");
EMIT_BUF_WITH_RET(ctx, buf);
}
if (val & TGSI_MEMBAR_SHADER_IMAGE) {
snprintf(buf, 255, "memoryBarrierImage();\n");
EMIT_BUF_WITH_RET(ctx, buf);
}
if (val & TGSI_MEMBAR_SHARED) {
snprintf(buf, 255, "memoryBarrierShared();\n");
EMIT_BUF_WITH_RET(ctx, buf);
}
}
}
break;
}
case TGSI_OPCODE_STORE:
ret = translate_store(ctx, inst, &sinfo, srcs, dsts);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_LOAD:
ret = translate_load(ctx, inst, &sinfo, &dinfo, srcs, dsts, writemask);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_ATOMUADD:
case TGSI_OPCODE_ATOMXCHG:
case TGSI_OPCODE_ATOMCAS:
case TGSI_OPCODE_ATOMAND:
case TGSI_OPCODE_ATOMOR:
case TGSI_OPCODE_ATOMXOR:
case TGSI_OPCODE_ATOMUMIN:
case TGSI_OPCODE_ATOMUMAX:
case TGSI_OPCODE_ATOMIMIN:
case TGSI_OPCODE_ATOMIMAX:
ret = translate_atomic(ctx, inst, &sinfo, srcs, dsts);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_RESQ:
ret = translate_resq(ctx, inst, srcs, dsts);
if (ret)
return FALSE;
break;
case TGSI_OPCODE_CLOCK:
ctx->shader_req_bits |= SHADER_REQ_SHADER_CLOCK;
snprintf(buf, 255, "%s = uintBitsToFloat(clock2x32ARB());\n", dsts[0]);
EMIT_BUF_WITH_RET(ctx, buf);
break;
default:
fprintf(stderr,"failed to convert opcode %d\n", inst->Instruction.Opcode);
break;
}
for (uint32_t i = 0; i < 1; i++) {
enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
if (dtype == TGSI_TYPE_DOUBLE) {
snprintf(buf, 255, "%s = uintBitsToFloat(unpackDouble2x32(%s));\n", fp64_dsts[0], dsts[0]);
EMIT_BUF_WITH_RET(ctx, buf);
}
}
if (inst->Instruction.Saturate) {
snprintf(buf, 255, "%s = clamp(%s, 0.0, 1.0);\n", dsts[0], dsts[0]);
EMIT_BUF_WITH_RET(ctx, buf);
}
return TRUE;
}
static boolean
prolog(struct tgsi_iterate_context *iter)
{
struct dump_ctx *ctx = (struct dump_ctx *)iter;
if (ctx->prog_type == -1)
ctx->prog_type = iter->processor.Processor;
if (iter->processor.Processor == TGSI_PROCESSOR_VERTEX &&
ctx->key->gs_present)
require_glsl_ver(ctx, 150);
return TRUE;
}
#define STRCAT_WITH_RET(mainstr, buf) do { \
(mainstr) = strcat_realloc((mainstr), (buf)); \
if ((mainstr) == NULL) return NULL; \
} while(0)
/* reserve space for: "#extension GL_ARB_gpu_shader5 : require\n" */
#define PAD_GPU_SHADER5(s) \
STRCAT_WITH_RET(s, " \n")
static char *emit_header(struct dump_ctx *ctx, char *glsl_hdr)
{
if (ctx->cfg->use_gles) {
char buf[32];
snprintf(buf, sizeof(buf), "#version %d es\n", ctx->cfg->glsl_version);
STRCAT_WITH_RET(glsl_hdr, buf);
if (ctx->shader_req_bits & SHADER_REQ_SAMPLER_MS)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_OES_texture_storage_multisample_2d_array : require\n");
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT) {
if (ctx->shader_req_bits & SHADER_REQ_FBFETCH)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_EXT_shader_framebuffer_fetch : require\n");
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
STRCAT_WITH_RET(glsl_hdr, "#extension GL_EXT_geometry_shader : require\n");
if (ctx->shader_req_bits & SHADER_REQ_PSIZE)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_OES_geometry_point_size : enable\n");
}
if ((ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL)) {
if (ctx->cfg->glsl_version < 320)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_OES_tessellation_shader : require\n");
STRCAT_WITH_RET(glsl_hdr, "#extension GL_OES_tessellation_point_size : enable\n");
}
if (ctx->cfg->glsl_version < 320) {
if (ctx->shader_req_bits & SHADER_REQ_SAMPLE_SHADING)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_OES_sample_variables : require\n");
if (ctx->shader_req_bits & SHADER_REQ_GPU_SHADER5)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_OES_gpu_shader5 : require\n");
}
PAD_GPU_SHADER5(glsl_hdr);
STRCAT_WITH_RET(glsl_hdr, "precision highp float;\n");
STRCAT_WITH_RET(glsl_hdr, "precision highp int;\n");
} else {
char buf[128];
if (ctx->prog_type == TGSI_PROCESSOR_COMPUTE) {
STRCAT_WITH_RET(glsl_hdr, "#version 330\n");
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_compute_shader : require\n");
} else {
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL ||
ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL ||
ctx->glsl_ver_required == 150)
STRCAT_WITH_RET(glsl_hdr, "#version 150\n");
else if (ctx->glsl_ver_required == 140)
STRCAT_WITH_RET(glsl_hdr, "#version 140\n");
else
STRCAT_WITH_RET(glsl_hdr, "#version 130\n");
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX ||
ctx->prog_type == TGSI_PROCESSOR_GEOMETRY ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL)
PAD_GPU_SHADER5(glsl_hdr);
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_tessellation_shader : require\n");
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX && ctx->cfg->use_explicit_locations)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_explicit_attrib_location : require\n");
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT && fs_emit_layout(ctx))
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_fragment_coord_conventions : require\n");
if (ctx->num_ubo)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_uniform_buffer_object : require\n");
if (ctx->num_cull_dist_prop || ctx->key->prev_stage_num_cull_out)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_cull_distance : require\n");
if (ctx->ssbo_used_mask)
STRCAT_WITH_RET(glsl_hdr, "#extension GL_ARB_shader_storage_buffer_object : require\n");
for (uint32_t i = 0; i < ARRAY_SIZE(shader_req_table); i++) {
if (shader_req_table[i].key == SHADER_REQ_SAMPLER_RECT && ctx->glsl_ver_required >= 140)
continue;
if (ctx->shader_req_bits & shader_req_table[i].key) {
snprintf(buf, 128, "#extension %s : require\n", shader_req_table[i].string);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
return glsl_hdr;
}
char vrend_shader_samplerreturnconv(enum tgsi_return_type type)
{
switch (type) {
case TGSI_RETURN_TYPE_SINT:
return 'i';
case TGSI_RETURN_TYPE_UINT:
return 'u';
default:
return ' ';
}
}
const char *vrend_shader_samplertypeconv(int sampler_type, int *is_shad)
{
switch (sampler_type) {
case TGSI_TEXTURE_BUFFER: return "Buffer";
case TGSI_TEXTURE_1D: return "1D";
case TGSI_TEXTURE_2D: return "2D";
case TGSI_TEXTURE_3D: return "3D";
case TGSI_TEXTURE_CUBE: return "Cube";
case TGSI_TEXTURE_RECT: return "2DRect";
case TGSI_TEXTURE_SHADOW1D: *is_shad = 1; return "1DShadow";
case TGSI_TEXTURE_SHADOW2D: *is_shad = 1; return "2DShadow";
case TGSI_TEXTURE_SHADOWRECT: *is_shad = 1; return "2DRectShadow";
case TGSI_TEXTURE_1D_ARRAY: return "1DArray";
case TGSI_TEXTURE_2D_ARRAY: return "2DArray";
case TGSI_TEXTURE_SHADOW1D_ARRAY: *is_shad = 1; return "1DArrayShadow";
case TGSI_TEXTURE_SHADOW2D_ARRAY: *is_shad = 1; return "2DArrayShadow";
case TGSI_TEXTURE_SHADOWCUBE: *is_shad = 1; return "CubeShadow";
case TGSI_TEXTURE_CUBE_ARRAY: return "CubeArray";
case TGSI_TEXTURE_SHADOWCUBE_ARRAY: *is_shad = 1; return "CubeArrayShadow";
case TGSI_TEXTURE_2D_MSAA: return "2DMS";
case TGSI_TEXTURE_2D_ARRAY_MSAA: return "2DMSArray";
default: return NULL;
}
}
static const char *get_interp_string(struct vrend_shader_cfg *cfg, int interpolate, bool flatshade)
{
switch (interpolate) {
case TGSI_INTERPOLATE_LINEAR:
if (!cfg->use_gles)
return "noperspective ";
else
return "";
case TGSI_INTERPOLATE_PERSPECTIVE:
return "smooth ";
case TGSI_INTERPOLATE_CONSTANT:
return "flat ";
case TGSI_INTERPOLATE_COLOR:
if (flatshade)
return "flat ";
/* fallthrough */
default:
return NULL;
}
}
static const char *get_aux_string(unsigned location)
{
switch (location) {
case TGSI_INTERPOLATE_LOC_CENTER:
default:
return "";
case TGSI_INTERPOLATE_LOC_CENTROID:
return "centroid ";
case TGSI_INTERPOLATE_LOC_SAMPLE:
return "sample ";
}
}
static void *emit_sampler_decl(struct dump_ctx *ctx, char *glsl_hdr,
uint32_t i, uint32_t range,
const struct vrend_shader_sampler *sampler)
{
char buf[255], ptc;
int is_shad = 0;
const char *sname, *precision, *stc;
sname = tgsi_proc_to_prefix(ctx->prog_type);
precision = (ctx->cfg->use_gles) ? "highp " : " ";
ptc = vrend_shader_samplerreturnconv(sampler->tgsi_sampler_return);
stc = vrend_shader_samplertypeconv(sampler->tgsi_sampler_type, &is_shad);
/* GLES does not support 1D textures -- we use a 2D texture and set the parameter set to 0.5 */
if (ctx->cfg->use_gles && sampler->tgsi_sampler_type == TGSI_TEXTURE_1D)
snprintf(buf, 255, "uniform highp %csampler2D %ssamp%d;\n", ptc, sname, i);
else if (range)
snprintf(buf, 255, "uniform %s%csampler%s %ssamp%d[%d];\n", precision, ptc, stc, sname, i, range);
else
snprintf(buf, 255, "uniform %s%csampler%s %ssamp%d;\n", precision, ptc, stc, sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
if (is_shad) {
snprintf(buf, 255, "uniform %svec4 %sshadmask%d;\n", precision, sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "uniform %svec4 %sshadadd%d;\n", precision, sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
ctx->shadow_samp_mask |= (1 << i);
}
return glsl_hdr;
}
const char *get_internalformat_string(int virgl_format, enum tgsi_return_type *stype)
{
switch (virgl_format) {
case PIPE_FORMAT_R11G11B10_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "r11f_g11f_b10f";
case PIPE_FORMAT_R10G10B10A2_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "rgb10_a2";
case PIPE_FORMAT_R10G10B10A2_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rgb10_a2ui";
case PIPE_FORMAT_R8_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "r8";
case PIPE_FORMAT_R8_SNORM:
*stype = TGSI_RETURN_TYPE_SNORM;
return "r8_snorm";
case PIPE_FORMAT_R8_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "r8ui";
case PIPE_FORMAT_R8_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "r8i";
case PIPE_FORMAT_R8G8_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "rg8";
case PIPE_FORMAT_R8G8_SNORM:
*stype = TGSI_RETURN_TYPE_SNORM;
return "rg8_snorm";
case PIPE_FORMAT_R8G8_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rg8ui";
case PIPE_FORMAT_R8G8_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "rg8i";
case PIPE_FORMAT_R8G8B8A8_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "rgba8";
case PIPE_FORMAT_R8G8B8A8_SNORM:
*stype = TGSI_RETURN_TYPE_SNORM;
return "rgba8_snorm";
case PIPE_FORMAT_R8G8B8A8_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rgba8ui";
case PIPE_FORMAT_R8G8B8A8_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "rgba8i";
case PIPE_FORMAT_R16_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "r16";
case PIPE_FORMAT_R16_SNORM:
*stype = TGSI_RETURN_TYPE_SNORM;
return "r16_snorm";
case PIPE_FORMAT_R16_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "r16ui";
case PIPE_FORMAT_R16_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "r16i";
case PIPE_FORMAT_R16_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "r16f";
case PIPE_FORMAT_R16G16_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "rg16";
case PIPE_FORMAT_R16G16_SNORM:
*stype = TGSI_RETURN_TYPE_SNORM;
return "rg16_snorm";
case PIPE_FORMAT_R16G16_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rg16ui";
case PIPE_FORMAT_R16G16_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "rg16i";
case PIPE_FORMAT_R16G16_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "rg16f";
case PIPE_FORMAT_R16G16B16A16_UNORM:
*stype = TGSI_RETURN_TYPE_UNORM;
return "rgba16";
case PIPE_FORMAT_R16G16B16A16_SNORM:
*stype = TGSI_RETURN_TYPE_SNORM;
return "rgba16_snorm";
case PIPE_FORMAT_R16G16B16A16_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "rgba16f";
case PIPE_FORMAT_R32_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "r32f";
case PIPE_FORMAT_R32_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "r32ui";
case PIPE_FORMAT_R32_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "r32i";
case PIPE_FORMAT_R32G32_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "rg32f";
case PIPE_FORMAT_R32G32_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rg32ui";
case PIPE_FORMAT_R32G32_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "rg32i";
case PIPE_FORMAT_R32G32B32A32_FLOAT:
*stype = TGSI_RETURN_TYPE_FLOAT;
return "rgba32f";
case PIPE_FORMAT_R32G32B32A32_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rgba32ui";
case PIPE_FORMAT_R16G16B16A16_UINT:
*stype = TGSI_RETURN_TYPE_UINT;
return "rgba16ui";
case PIPE_FORMAT_R16G16B16A16_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "rgba16i";
case PIPE_FORMAT_R32G32B32A32_SINT:
*stype = TGSI_RETURN_TYPE_SINT;
return "rgba32i";
case PIPE_FORMAT_NONE:
*stype = TGSI_RETURN_TYPE_UNORM;
return "";
default:
*stype = TGSI_RETURN_TYPE_UNORM;
fprintf(stderr, "illegal format %d\n", virgl_format);
return "";
}
}
static void *emit_image_decl(const struct dump_ctx *ctx, char *glsl_hdr,
uint32_t i, uint32_t range,
const struct vrend_shader_image *image)
{
char buf[255], ptc;
int is_shad = 0;
const char *sname, *stc, *formatstr;
enum tgsi_return_type itype;
const char *volatile_str = image->vflag ? "volatile " : "";
const char *precision = ctx->cfg->use_gles ? "highp " : "";
const char *access = "";
formatstr = get_internalformat_string(image->decl.Format, &itype);
ptc = vrend_shader_samplerreturnconv(itype);
sname = tgsi_proc_to_prefix(ctx->prog_type);
stc = vrend_shader_samplertypeconv(image->decl.Resource, &is_shad);
if (!image->decl.Writable)
access = "readonly ";
else if (!image->decl.Format ||
(ctx->cfg->use_gles &&
(image->decl.Format != PIPE_FORMAT_R32_FLOAT) &&
(image->decl.Format != PIPE_FORMAT_R32_SINT) &&
(image->decl.Format != PIPE_FORMAT_R32_UINT)))
access = "writeonly ";
if (ctx->cfg->use_gles) { /* TODO: enable on OpenGL 4.2 and up also */
snprintf(buf, 255, "layout(binding=%d%s%s) ",
i, formatstr[0] != '\0' ? ", " : "", formatstr);
STRCAT_WITH_RET(glsl_hdr, buf);
} else if (formatstr[0] != '\0') {
snprintf(buf, 255, "layout(%s) ", formatstr);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (range)
snprintf(buf, 255, "%s%suniform %s%cimage%s %simg%d[%d];\n",
access, volatile_str, precision, ptc, stc, sname, i, range);
else
snprintf(buf, 255, "%s%suniform %s%cimage%s %simg%d;\n",
access, volatile_str, precision, ptc, stc, sname, i);
STRCAT_WITH_RET(glsl_hdr, buf);
return glsl_hdr;
}
static char *emit_ios(struct dump_ctx *ctx, char *glsl_hdr)
{
uint32_t i;
char buf[255];
char postfix[8];
const char *prefix = "", *auxprefix = "";
bool fcolor_emitted[2], bcolor_emitted[2];
uint32_t nsamp;
const char *sname = tgsi_proc_to_prefix(ctx->prog_type);
ctx->num_interps = 0;
if (ctx->so && ctx->so->num_outputs >= PIPE_MAX_SO_OUTPUTS) {
fprintf(stderr, "Num outputs exceeded, max is %u\n", PIPE_MAX_SO_OUTPUTS);
return NULL;
}
if (ctx->key->color_two_side) {
fcolor_emitted[0] = fcolor_emitted[1] = false;
bcolor_emitted[0] = bcolor_emitted[1] = false;
}
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT) {
if (fs_emit_layout(ctx)) {
bool upper_left = !(ctx->fs_coord_origin ^ ctx->key->invert_fs_origin);
char comma = (upper_left && ctx->fs_pixel_center) ? ',' : ' ';
snprintf(buf, 255, "layout(%s%c%s) in vec4 gl_FragCoord;\n",
upper_left ? "origin_upper_left" : "",
comma,
ctx->fs_pixel_center ? "pixel_center_integer" : "");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->early_depth_stencil) {
snprintf(buf, 255, "layout(early_fragment_tests) in;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_COMPUTE) {
snprintf(buf, 255, "layout (local_size_x = %d, local_size_y = %d, local_size_z = %d) in;\n",
ctx->local_cs_block_size[0], ctx->local_cs_block_size[1], ctx->local_cs_block_size[2]);
STRCAT_WITH_RET(glsl_hdr, buf);
if (ctx->req_local_mem) {
enum vrend_type_qualifier type = ctx->integer_memory ? INT : UINT;
snprintf(buf, 255, "shared %s values[%d];\n", get_string(type), ctx->req_local_mem / 4);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
char invocbuf[25];
if (ctx->gs_num_invocations)
snprintf(invocbuf, 25, ", invocations = %d", ctx->gs_num_invocations);
snprintf(buf, 255, "layout(%s%s) in;\n", prim_to_name(ctx->gs_in_prim),
ctx->gs_num_invocations > 1 ? invocbuf : "");
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "layout(%s, max_vertices = %d) out;\n", prim_to_name(ctx->gs_out_prim), ctx->gs_max_out_verts);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx_indirect_inputs(ctx)) {
const char *name_prefix = get_stage_input_name_prefix(ctx, ctx->prog_type);
if (ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL) {
if (ctx->patch_input_range.used) {
int size = ctx->patch_input_range.last - ctx->patch_input_range.first + 1;
if (size < ctx->key->num_indirect_patch_inputs)
size = ctx->key->num_indirect_patch_inputs;
snprintf(buf, 255, "patch in vec4 %sp%d[%d];\n", name_prefix, ctx->patch_input_range.first, size);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL) {
if (ctx->generic_input_range.used) {
int size = ctx->generic_input_range.last - ctx->generic_input_range.first + 1;
if (size < ctx->key->num_indirect_generic_inputs)
size = ctx->key->num_indirect_generic_inputs;
snprintf(buf, 255, "in block { vec4 %s%d[%d]; } blk[];\n", name_prefix, ctx->generic_input_range.first, size);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
for (i = 0; i < ctx->num_inputs; i++) {
if (!ctx->inputs[i].glsl_predefined_no_emit) {
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX && ctx->cfg->use_explicit_locations) {
snprintf(buf, 255, "layout(location=%d) ", ctx->inputs[i].first);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL && ctx->inputs[i].name == TGSI_SEMANTIC_PATCH)
prefix = "patch ";
else if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT &&
(ctx->inputs[i].name == TGSI_SEMANTIC_GENERIC ||
ctx->inputs[i].name == TGSI_SEMANTIC_COLOR)) {
prefix = get_interp_string(ctx->cfg, ctx->inputs[i].interpolate, ctx->key->flatshade);
if (!prefix)
prefix = "";
auxprefix = get_aux_string(ctx->inputs[i].location);
ctx->num_interps++;
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
snprintf(postfix, 8, "[%d]", gs_input_prim_to_size(ctx->gs_in_prim));
} else if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL ||
(ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL && ctx->inputs[i].name != TGSI_SEMANTIC_PATCH)) {
snprintf(postfix, 8, "[]");
} else
postfix[0] = 0;
snprintf(buf, 255, "%s%sin vec4 %s%s;\n", prefix, auxprefix, ctx->inputs[i].glsl_name, postfix);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT && ctx->cfg->use_gles &&
(ctx->key->coord_replace & (1 << ctx->inputs[i].sid))) {
snprintf(buf, 255, "uniform float winsys_adjust_y;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL) {
snprintf(buf, 255, "layout(vertices = %d) out;\n", ctx->tcs_vertices_out);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL) {
snprintf(buf, 255, "layout(%s, %s, %s%s) in;\n",
prim_to_tes_name(ctx->tes_prim_mode),
get_spacing_string(ctx->tes_spacing),
ctx->tes_vertex_order ? "cw" : "ccw",
ctx->tes_point_mode ? ", point_mode" : "");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx_indirect_outputs(ctx)) {
const char *name_prefix = get_stage_output_name_prefix(ctx->prog_type);
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX) {
if (ctx->generic_output_range.used) {
snprintf(buf, 255, "out block { vec4 %s%d[%d]; } oblk;\n", name_prefix, ctx->generic_output_range.first, ctx->generic_output_range.last - ctx->generic_output_range.first + 1);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL) {
if (ctx->generic_output_range.used) {
snprintf(buf, 255, "out block { vec4 %s%d[%d]; } oblk[];\n", name_prefix, ctx->generic_output_range.first, ctx->generic_output_range.last - ctx->generic_output_range.first + 1);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->patch_output_range.used) {
snprintf(buf, 255, "patch out vec4 %sp%d[%d];\n", name_prefix, ctx->patch_output_range.first, ctx->patch_output_range.last - ctx->patch_output_range.first + 1);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
if (ctx->write_all_cbufs) {
for (i = 0; i < (uint32_t)ctx->cfg->max_draw_buffers; i++) {
if (ctx->cfg->use_gles)
snprintf(buf, 255, "layout (location=%d) out vec4 fsout_c%d;\n", i, i);
else
snprintf(buf, 255, "out vec4 fsout_c%d;\n", i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
} else {
for (i = 0; i < ctx->num_outputs; i++) {
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX && ctx->key->color_two_side && ctx->outputs[i].sid < 2) {
if (ctx->outputs[i].name == TGSI_SEMANTIC_COLOR)
fcolor_emitted[ctx->outputs[i].sid] = true;
if (ctx->outputs[i].name == TGSI_SEMANTIC_BCOLOR)
bcolor_emitted[ctx->outputs[i].sid] = true;
}
if (!ctx->outputs[i].glsl_predefined_no_emit) {
if ((ctx->prog_type == TGSI_PROCESSOR_VERTEX ||
ctx->prog_type == TGSI_PROCESSOR_GEOMETRY ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL) &&
(ctx->outputs[i].name == TGSI_SEMANTIC_GENERIC ||
ctx->outputs[i].name == TGSI_SEMANTIC_COLOR ||
ctx->outputs[i].name == TGSI_SEMANTIC_BCOLOR)) {
ctx->num_interps++;
prefix = INTERP_PREFIX;
} else
prefix = "";
/* ugly leave spaces to patch interp in later */
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL) {
if (ctx->outputs[i].name == TGSI_SEMANTIC_PATCH)
snprintf(buf, 255, "patch out vec4 %s;\n", ctx->outputs[i].glsl_name);
else
snprintf(buf, 255, "%sout vec4 %s[];\n", prefix, ctx->outputs[i].glsl_name);
} else if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY && ctx->outputs[i].stream)
snprintf(buf, 255, "layout (stream = %d) %s%s%sout vec4 %s;\n", ctx->outputs[i].stream, prefix,
ctx->outputs[i].precise ? "precise " : "",
ctx->outputs[i].invariant ? "invariant " : "",
ctx->outputs[i].glsl_name);
else
snprintf(buf, 255, "%s%s%s%s vec4 %s;\n",
prefix,
ctx->outputs[i].precise ? "precise " : "",
ctx->outputs[i].invariant ? "invariant " : "",
ctx->outputs[i].fbfetch_used ? "inout" : "out",
ctx->outputs[i].glsl_name);
STRCAT_WITH_RET(glsl_hdr, buf);
} else if (ctx->outputs[i].invariant || ctx->outputs[i].precise) {
snprintf(buf, 255, "%s%s;\n",
ctx->outputs[i].precise ? "precise " :
(ctx->outputs[i].invariant ? "invariant " : ""),
ctx->outputs[i].glsl_name);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX && ctx->key->color_two_side) {
for (i = 0; i < 2; i++) {
if (fcolor_emitted[i] && !bcolor_emitted[i]) {
snprintf(buf, 255, "%sout vec4 ex_bc%d;\n", INTERP_PREFIX, i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (bcolor_emitted[i] && !fcolor_emitted[i]) {
snprintf(buf, 255, "%sout vec4 ex_c%d;\n", INTERP_PREFIX, i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX ||
ctx->prog_type == TGSI_PROCESSOR_GEOMETRY ||
ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL) {
snprintf(buf, 255, "uniform float winsys_adjust_y;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX) {
if (ctx->has_clipvertex) {
snprintf(buf, 255, "%svec4 clipv_tmp;\n", ctx->has_clipvertex_so ? "out " : "");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_clip_dist || ctx->key->clip_plane_enable) {
bool has_prop = (ctx->num_clip_dist_prop + ctx->num_cull_dist_prop) > 0;
int num_clip_dists = ctx->num_clip_dist ? ctx->num_clip_dist : 8;
int num_cull_dists = 0;
char cull_buf[64] = { 0 };
char clip_buf[64] = { 0 };
if (has_prop) {
num_clip_dists = ctx->num_clip_dist_prop;
num_cull_dists = ctx->num_cull_dist_prop;
if (num_clip_dists)
snprintf(clip_buf, 64, "out float gl_ClipDistance[%d];\n", num_clip_dists);
if (num_cull_dists)
snprintf(cull_buf, 64, "out float gl_CullDistance[%d];\n", num_cull_dists);
} else
snprintf(clip_buf, 64, "out float gl_ClipDistance[%d];\n", num_clip_dists);
if (ctx->key->clip_plane_enable) {
snprintf(buf, 255, "uniform vec4 clipp[8];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->key->gs_present || ctx->key->tes_present) {
ctx->vs_has_pervertex = true;
snprintf(buf, 255, "out gl_PerVertex {\n vec4 gl_Position;\n float gl_PointSize;\n%s%s};\n", clip_buf, cull_buf);
STRCAT_WITH_RET(glsl_hdr, buf);
} else {
snprintf(buf, 255, "%s%s", clip_buf, cull_buf);
STRCAT_WITH_RET(glsl_hdr, buf);
}
snprintf(buf, 255, "vec4 clip_dist_temp[2];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_GEOMETRY) {
if (ctx->num_in_clip_dist || ctx->key->clip_plane_enable || ctx->key->prev_stage_pervertex_out) {
int clip_dist, cull_dist;
char clip_var[64] = {}, cull_var[64] = {};
clip_dist = ctx->key->prev_stage_num_clip_out ? ctx->key->prev_stage_num_clip_out : ctx->num_in_clip_dist;
cull_dist = ctx->key->prev_stage_num_cull_out;
if (clip_dist)
snprintf(clip_var, 64, "float gl_ClipDistance[%d];\n", clip_dist);
if (cull_dist)
snprintf(cull_var, 64, "float gl_CullDistance[%d];\n", cull_dist);
snprintf(buf, 255, "in gl_PerVertex {\n vec4 gl_Position;\n float gl_PointSize; \n %s%s\n} gl_in[];\n", clip_var, cull_var);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_clip_dist) {
bool has_prop = (ctx->num_clip_dist_prop + ctx->num_cull_dist_prop) > 0;
int num_clip_dists = ctx->num_clip_dist ? ctx->num_clip_dist : 8;
int num_cull_dists = 0;
char cull_buf[64] = { 0 };
char clip_buf[64] = { 0 };
if (has_prop) {
num_clip_dists = ctx->num_clip_dist_prop;
num_cull_dists = ctx->num_cull_dist_prop;
if (num_clip_dists)
snprintf(clip_buf, 64, "out float gl_ClipDistance[%d];\n", num_clip_dists);
if (num_cull_dists)
snprintf(cull_buf, 64, "out float gl_CullDistance[%d];\n", num_cull_dists);
} else
snprintf(clip_buf, 64, "out float gl_ClipDistance[%d];\n", num_clip_dists);
snprintf(buf, 255, "%s%s\n", clip_buf, cull_buf);
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "vec4 clip_dist_temp[2];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT && ctx->num_in_clip_dist) {
if (ctx->key->prev_stage_num_clip_out) {
snprintf(buf, 255, "in float gl_ClipDistance[%d];\n", ctx->key->prev_stage_num_clip_out);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->key->prev_stage_num_cull_out) {
snprintf(buf, 255, "in float gl_CullDistance[%d];\n", ctx->key->prev_stage_num_cull_out);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL || ctx->prog_type == TGSI_PROCESSOR_TESS_EVAL) {
if (ctx->num_in_clip_dist || ctx->key->prev_stage_pervertex_out) {
int clip_dist, cull_dist;
char clip_var[64] = {}, cull_var[64] = {};
clip_dist = ctx->key->prev_stage_num_clip_out ? ctx->key->prev_stage_num_clip_out : ctx->num_in_clip_dist;
cull_dist = ctx->key->prev_stage_num_cull_out;
if (clip_dist)
snprintf(clip_var, 64, "float gl_ClipDistance[%d];\n", clip_dist);
if (cull_dist)
snprintf(cull_var, 64, "float gl_CullDistance[%d];\n", cull_dist);
snprintf(buf, 255, "in gl_PerVertex {\n vec4 gl_Position;\n float gl_PointSize; \n %s%s} gl_in[];\n", clip_var, cull_var);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_clip_dist) {
snprintf(buf, 255, "out gl_PerVertex {\n vec4 gl_Position;\n float gl_PointSize;\n float gl_ClipDistance[%d];\n} gl_out[];\n", ctx->num_clip_dist ? ctx->num_clip_dist : 8);
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "vec4 clip_dist_temp[2];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->so) {
char outtype[6] = {0};
for (i = 0; i < ctx->so->num_outputs; i++) {
if (!ctx->write_so_outputs[i])
continue;
if (ctx->so->output[i].num_components == 1)
snprintf(outtype, 6, "float");
else
snprintf(outtype, 6, "vec%d", ctx->so->output[i].num_components);
if (ctx->prog_type == TGSI_PROCESSOR_TESS_CTRL)
snprintf(buf, 255, "out %s tfout%d[];\n", outtype, i);
else if (ctx->so->output[i].stream && ctx->prog_type == TGSI_PROCESSOR_GEOMETRY)
snprintf(buf, 255, "layout (stream=%d) out %s tfout%d;\n", ctx->so->output[i].stream, outtype, i);
else
snprintf(buf, 255, "out %s tfout%d;\n", outtype, i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
for (i = 0; i < ctx->num_temp_ranges; i++) {
snprintf(buf, 255, "vec4 temp%d[%d];\n", ctx->temp_ranges[i].first, ctx->temp_ranges[i].last - ctx->temp_ranges[i].first + 1);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->write_mul_utemp) {
snprintf(buf, 255, "uvec4 mul_utemp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "uvec4 umul_temp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->write_mul_itemp) {
snprintf(buf, 255, "ivec4 mul_itemp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "ivec4 imul_temp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->ssbo_used_mask || ctx->has_file_memory) {
snprintf(buf, 255, "uint ssbo_addr_temp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->shader_req_bits & SHADER_REQ_FP64) {
snprintf(buf, 255, "dvec2 fp64_dst[3];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
snprintf(buf, 255, "dvec2 fp64_src[4];\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
for (i = 0; i < ctx->num_address; i++) {
snprintf(buf, 255, "int addr%d;\n", i);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->num_consts) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
snprintf(buf, 255, "uniform uvec4 %sconst0[%d];\n", cname, ctx->num_consts);
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->key->color_two_side) {
if (ctx->color_in_mask & 1) {
snprintf(buf, 255, "vec4 realcolor0;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
if (ctx->color_in_mask & 2) {
snprintf(buf, 255, "vec4 realcolor1;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->num_ubo) {
const char *cname = tgsi_proc_to_prefix(ctx->prog_type);
if (ctx->info.dimension_indirect_files & (1 << TGSI_FILE_CONSTANT)) {
require_glsl_ver(ctx, 150);
snprintf(buf, 255, "uniform %subo { vec4 ubocontents[%d]; } %suboarr[%d];\n", cname, ctx->ubo_sizes[0], cname, ctx->num_ubo);
STRCAT_WITH_RET(glsl_hdr, buf);
} else {
for (i = 0; i < ctx->num_ubo; i++) {
snprintf(buf, 255, "uniform %subo%d { vec4 %subo%dcontents[%d]; };\n", cname, ctx->ubo_idx[i], cname, ctx->ubo_idx[i], ctx->ubo_sizes[i]);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
}
if (ctx->info.indirect_files & (1 << TGSI_FILE_SAMPLER)) {
for (i = 0; i < ctx->num_sampler_arrays; i++) {
uint32_t first = ctx->sampler_arrays[i].first;
uint32_t range = ctx->sampler_arrays[i].array_size;
glsl_hdr = emit_sampler_decl(ctx, glsl_hdr, first, range, ctx->samplers + first);
if (!glsl_hdr)
return NULL;
}
} else {
nsamp = util_last_bit(ctx->samplers_used);
for (i = 0; i < nsamp; i++) {
if ((ctx->samplers_used & (1 << i)) == 0)
continue;
glsl_hdr = emit_sampler_decl(ctx, glsl_hdr, i, 0, ctx->samplers + i);
if (!glsl_hdr)
return NULL;
}
}
if (ctx->info.indirect_files & (1 << TGSI_FILE_IMAGE)) {
for (i = 0; i < ctx->num_image_arrays; i++) {
uint32_t first = ctx->image_arrays[i].first;
uint32_t range = ctx->image_arrays[i].array_size;
glsl_hdr = emit_image_decl(ctx, glsl_hdr, first, range, ctx->images + first);
if (!glsl_hdr)
return NULL;
}
} else {
uint32_t mask = ctx->images_used_mask;
while (mask) {
i = u_bit_scan(&mask);
glsl_hdr = emit_image_decl(ctx, glsl_hdr, i, 0, ctx->images + i);
if (!glsl_hdr)
return NULL;
}
}
if (ctx->info.indirect_files & (1 << TGSI_FILE_BUFFER)) {
uint32_t mask = ctx->ssbo_used_mask;
while (mask) {
int start, count;
u_bit_scan_consecutive_range(&mask, &start, &count);
const char *atomic = (ctx->ssbo_atomic_mask & (1 << start)) ? "atomic" : "";
snprintf(buf, 255, "layout (binding = %d, std430) buffer %sssbo%d { uint %sssbocontents%d[]; } %sssboarr%s[%d];\n", start, sname, start, sname, start, sname, atomic, count);
STRCAT_WITH_RET(glsl_hdr, buf);
}
} else {
uint32_t mask = ctx->ssbo_used_mask;
while (mask) {
uint32_t id = u_bit_scan(&mask);
sname = tgsi_proc_to_prefix(ctx->prog_type);
enum vrend_type_qualifier type = (ctx->ssbo_integer_mask & (1 << id)) ? INT : UINT;
snprintf(buf, 255, "layout (binding = %d, std430) buffer %sssbo%d { %s %sssbocontents%d[]; };\n", id, sname, id,
get_string(type), sname, id);
STRCAT_WITH_RET(glsl_hdr, buf);
}
}
if (ctx->prog_type == TGSI_PROCESSOR_FRAGMENT &&
ctx->key->pstipple_tex == true) {
snprintf(buf, 255, "uniform sampler2D pstipple_sampler;\nfloat stip_temp;\n");
STRCAT_WITH_RET(glsl_hdr, buf);
}
return glsl_hdr;
}
static boolean fill_fragment_interpolants(struct dump_ctx *ctx, struct vrend_shader_info *sinfo)
{
uint32_t i, index = 0;
for (i = 0; i < ctx->num_inputs; i++) {
if (ctx->inputs[i].glsl_predefined_no_emit)
continue;
if (ctx->inputs[i].name != TGSI_SEMANTIC_GENERIC &&
ctx->inputs[i].name != TGSI_SEMANTIC_COLOR)
continue;
if (index >= ctx->num_interps) {
fprintf(stderr, "mismatch in number of interps %d %d\n", index, ctx->num_interps);
return TRUE;
}
sinfo->interpinfo[index].semantic_name = ctx->inputs[i].name;
sinfo->interpinfo[index].semantic_index = ctx->inputs[i].sid;
sinfo->interpinfo[index].interpolate = ctx->inputs[i].interpolate;
sinfo->interpinfo[index].location = ctx->inputs[i].location;
index++;
}
return TRUE;
}
static boolean fill_interpolants(struct dump_ctx *ctx, struct vrend_shader_info *sinfo)
{
boolean ret;
if (!ctx->num_interps)
return TRUE;
if (ctx->prog_type == TGSI_PROCESSOR_VERTEX || ctx->prog_type == TGSI_PROCESSOR_GEOMETRY)
return TRUE;
free(sinfo->interpinfo);
sinfo->interpinfo = calloc(ctx->num_interps, sizeof(struct vrend_interp_info));
if (!sinfo->interpinfo)
return FALSE;
ret = fill_fragment_interpolants(ctx, sinfo);
if (ret == FALSE)
goto out_fail;
return TRUE;
out_fail:
free(sinfo->interpinfo);
return FALSE;
}
static boolean analyze_instruction(struct tgsi_iterate_context *iter,
struct tgsi_full_instruction *inst)
{
struct dump_ctx *ctx = (struct dump_ctx *)iter;
uint32_t opcode = inst->Instruction.Opcode;
if (opcode == TGSI_OPCODE_ATOMIMIN || opcode == TGSI_OPCODE_ATOMIMAX) {
const struct tgsi_full_src_register *src = &inst->Src[0];
if (src->Register.File == TGSI_FILE_BUFFER)
ctx->ssbo_integer_mask |= 1 << src->Register.Index;
if (src->Register.File == TGSI_FILE_MEMORY)
ctx->integer_memory = true;
}
return true;
}
char *vrend_convert_shader(struct vrend_shader_cfg *cfg,
const struct tgsi_token *tokens,
uint32_t req_local_mem,
struct vrend_shader_key *key,
struct vrend_shader_info *sinfo)
{
struct dump_ctx ctx;
char *glsl_final = NULL;
boolean bret;
char *glsl_hdr = NULL;
memset(&ctx, 0, sizeof(struct dump_ctx));
/* First pass to deal with edge cases. */
ctx.iter.iterate_instruction = analyze_instruction;
bret = tgsi_iterate_shader(tokens, &ctx.iter);
if (bret == FALSE)
return NULL;
ctx.iter.prolog = prolog;
ctx.iter.iterate_instruction = iter_instruction;
ctx.iter.iterate_declaration = iter_declaration;
ctx.iter.iterate_immediate = iter_immediate;
ctx.iter.iterate_property = iter_property;
ctx.iter.epilog = NULL;
ctx.key = key;
ctx.cfg = cfg;
ctx.prog_type = -1;
ctx.num_image_arrays = 0;
ctx.image_arrays = NULL;
ctx.num_sampler_arrays = 0;
ctx.sampler_arrays = NULL;
ctx.ssbo_array_base = 0xffffffff;
ctx.ssbo_atomic_array_base = 0xffffffff;
ctx.has_sample_input = false;
ctx.req_local_mem = req_local_mem;
tgsi_scan_shader(tokens, &ctx.info);
/* if we are in core profile mode we should use GLSL 1.40 */
if (cfg->use_core_profile && cfg->glsl_version >= 140)
require_glsl_ver(&ctx, 140);
if (sinfo->so_info.num_outputs) {
ctx.so = &sinfo->so_info;
ctx.so_names = calloc(sinfo->so_info.num_outputs, sizeof(char *));
if (!ctx.so_names)
goto fail;
} else
ctx.so_names = NULL;
if (ctx.info.dimension_indirect_files & (1 << TGSI_FILE_CONSTANT))
require_glsl_ver(&ctx, 150);
if (ctx.info.indirect_files & (1 << TGSI_FILE_BUFFER) ||
ctx.info.indirect_files & (1 << TGSI_FILE_IMAGE)) {
require_glsl_ver(&ctx, 150);
ctx.shader_req_bits |= SHADER_REQ_GPU_SHADER5;
}
if (ctx.info.indirect_files & (1 << TGSI_FILE_SAMPLER))
ctx.shader_req_bits |= SHADER_REQ_GPU_SHADER5;
ctx.glsl_main = malloc(4096);
if (!ctx.glsl_main)
goto fail;
ctx.glsl_main[0] = '\0';
bret = tgsi_iterate_shader(tokens, &ctx.iter);
if (bret == FALSE)
goto fail;
glsl_hdr = malloc(1024);
if (!glsl_hdr)
goto fail;
glsl_hdr[0] = '\0';
glsl_hdr = emit_header(&ctx, glsl_hdr);
if (!glsl_hdr)
goto fail;
glsl_hdr = emit_ios(&ctx, glsl_hdr);
if (!glsl_hdr)
goto fail;
glsl_final = malloc(strlen(glsl_hdr) + strlen(ctx.glsl_main) + 1);
if (!glsl_final)
goto fail;
glsl_final[0] = '\0';
bret = fill_interpolants(&ctx, sinfo);
if (bret == FALSE)
goto fail;
strcat(glsl_final, glsl_hdr);
strcat(glsl_final, ctx.glsl_main);
if (vrend_dump_shaders)
fprintf(stderr,"GLSL: %s\n", glsl_final);
free(ctx.temp_ranges);
free(ctx.glsl_main);
free(glsl_hdr);
sinfo->num_ucp = ctx.key->clip_plane_enable ? 8 : 0;
sinfo->has_pervertex_out = ctx.vs_has_pervertex;
sinfo->has_sample_input = ctx.has_sample_input;
bool has_prop = (ctx.num_clip_dist_prop + ctx.num_cull_dist_prop) > 0;
sinfo->num_clip_out = has_prop ? ctx.num_clip_dist_prop : (ctx.num_clip_dist ? ctx.num_clip_dist : 8);
sinfo->num_cull_out = has_prop ? ctx.num_cull_dist_prop : 0;
sinfo->samplers_used_mask = ctx.samplers_used;
sinfo->images_used_mask = ctx.images_used_mask;
sinfo->num_consts = ctx.num_consts;
sinfo->num_ubos = ctx.num_ubo;
memcpy(sinfo->ubo_idx, ctx.ubo_idx, ctx.num_ubo * sizeof(*ctx.ubo_idx));
sinfo->ssbo_used_mask = ctx.ssbo_used_mask;
sinfo->ubo_indirect = ctx.info.dimension_indirect_files & (1 << TGSI_FILE_CONSTANT);
if (ctx_indirect_inputs(&ctx)) {
if (ctx.generic_input_range.used)
sinfo->num_indirect_generic_inputs = ctx.generic_input_range.last - ctx.generic_input_range.first + 1;
if (ctx.patch_input_range.used)
sinfo->num_indirect_patch_inputs = ctx.patch_input_range.last - ctx.patch_input_range.first + 1;
}
if (ctx_indirect_outputs(&ctx)) {
if (ctx.generic_output_range.used)
sinfo->num_indirect_generic_outputs = ctx.generic_output_range.last - ctx.generic_output_range.first + 1;
if (ctx.patch_output_range.used)
sinfo->num_indirect_patch_outputs = ctx.patch_output_range.last - ctx.patch_output_range.first + 1;
}
sinfo->num_inputs = ctx.num_inputs;
sinfo->num_interps = ctx.num_interps;
sinfo->num_outputs = ctx.num_outputs;
sinfo->shadow_samp_mask = ctx.shadow_samp_mask;
sinfo->glsl_ver = ctx.glsl_ver_required;
sinfo->gs_out_prim = ctx.gs_out_prim;
sinfo->tes_prim = ctx.tes_prim_mode;
sinfo->tes_point_mode = ctx.tes_point_mode;
sinfo->so_names = ctx.so_names;
sinfo->attrib_input_mask = ctx.attrib_input_mask;
sinfo->sampler_arrays = ctx.sampler_arrays;
sinfo->num_sampler_arrays = ctx.num_sampler_arrays;
sinfo->image_arrays = ctx.image_arrays;
sinfo->num_image_arrays = ctx.num_image_arrays;
return glsl_final;
fail:
free(ctx.glsl_main);
free(glsl_final);
free(glsl_hdr);
free(ctx.so_names);
free(ctx.temp_ranges);
return NULL;
}
static void replace_interp(char *program,
const char *var_name,
const char *pstring, const char *auxstring)
{
char *ptr;
int mylen = strlen(INTERP_PREFIX) + strlen("out vec4 ");
ptr = strstr(program, var_name);
if (!ptr)
return;
ptr -= mylen;
memset(ptr, ' ', strlen(INTERP_PREFIX));
memcpy(ptr, pstring, strlen(pstring));
memcpy(ptr + strlen(pstring), auxstring, strlen(auxstring));
}
static const char *gpu_shader5_string = "#extension GL_ARB_gpu_shader5 : require\n";
static void require_gpu_shader5(char *program)
{
/* the first line is the #version line */
char *ptr = strchr(program, '\n');
if (!ptr)
return;
ptr++;
memcpy(ptr, gpu_shader5_string, strlen(gpu_shader5_string));
}
bool vrend_patch_vertex_shader_interpolants(struct vrend_shader_cfg *cfg, char *program,
struct vrend_shader_info *vs_info,
struct vrend_shader_info *fs_info, const char *oprefix, bool flatshade)
{
int i;
const char *pstring, *auxstring;
char glsl_name[64];
if (!vs_info || !fs_info)
return true;
if (!fs_info->interpinfo)
return true;
if (fs_info->has_sample_input &&
(!cfg->use_gles && (cfg->glsl_version >= 320)))
require_gpu_shader5(program);
for (i = 0; i < fs_info->num_interps; i++) {
pstring = get_interp_string(cfg, fs_info->interpinfo[i].interpolate, flatshade);
if (!pstring)
continue;
auxstring = get_aux_string(fs_info->interpinfo[i].location);
switch (fs_info->interpinfo[i].semantic_name) {
case TGSI_SEMANTIC_COLOR:
/* color is a bit trickier */
if (fs_info->glsl_ver < 140) {
if (fs_info->interpinfo[i].semantic_index == 1) {
replace_interp(program, "gl_FrontSecondaryColor", pstring, auxstring);
replace_interp(program, "gl_BackSecondaryColor", pstring, auxstring);
} else {
replace_interp(program, "gl_FrontColor", pstring, auxstring);
replace_interp(program, "gl_BackColor", pstring, auxstring);
}
} else {
snprintf(glsl_name, 64, "ex_c%d", fs_info->interpinfo[i].semantic_index);
replace_interp(program, glsl_name, pstring, auxstring);
snprintf(glsl_name, 64, "ex_bc%d", fs_info->interpinfo[i].semantic_index);
replace_interp(program, glsl_name, pstring, auxstring);
}
break;
case TGSI_SEMANTIC_GENERIC:
snprintf(glsl_name, 64, "%s_g%d", oprefix, fs_info->interpinfo[i].semantic_index);
replace_interp(program, glsl_name, pstring, auxstring);
break;
default:
fprintf(stderr,"unhandled semantic: %x\n", fs_info->interpinfo[i].semantic_name);
return false;
}
}
if (vrend_dump_shaders)
fprintf(stderr,"GLSL: post interp: %s\n", program);
return true;
}