|  |  |  | /*
 | 
					
						
							|  |  |  |  * Copyright © 2011 Intel Corporation
 | 
					
						
							|  |  |  |  * Copyright © 2012 Collabora, Ltd.
 | 
					
						
							|  |  |  |  *
 | 
					
						
							|  |  |  |  * Permission to use, copy, modify, distribute, and sell this software and
 | 
					
						
							|  |  |  |  * its documentation for any purpose is hereby granted without fee, provided
 | 
					
						
							|  |  |  |  * that the above copyright notice appear in all copies and that both that
 | 
					
						
							|  |  |  |  * copyright notice and this permission notice appear in supporting
 | 
					
						
							|  |  |  |  * documentation, and that the name of the copyright holders not be used in
 | 
					
						
							|  |  |  |  * advertising or publicity pertaining to distribution of the software
 | 
					
						
							|  |  |  |  * without specific, written prior permission.  The copyright holders make
 | 
					
						
							|  |  |  |  * no representations about the suitability of this software for any
 | 
					
						
							|  |  |  |  * purpose.  It is provided "as is" without express or implied warranty.
 | 
					
						
							|  |  |  |  *
 | 
					
						
							|  |  |  |  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
 | 
					
						
							|  |  |  |  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
 | 
					
						
							|  |  |  |  * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
 | 
					
						
							|  |  |  |  * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
 | 
					
						
							|  |  |  |  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
 | 
					
						
							|  |  |  |  * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 | 
					
						
							|  |  |  |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | 
					
						
							|  |  |  |  */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "config.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <float.h>
 | 
					
						
							|  |  |  | #include <string.h>
 | 
					
						
							|  |  |  | #include <stdlib.h>
 | 
					
						
							|  |  |  | #include <math.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef IN_WESTON
 | 
					
						
							|  |  |  | #include <wayland-server.h>
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #define WL_EXPORT
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "matrix.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * Matrices are stored in column-major order, that is the array indices are:
 | 
					
						
							|  |  |  |  *  0  4  8 12
 | 
					
						
							|  |  |  |  *  1  5  9 13
 | 
					
						
							|  |  |  |  *  2  6 10 14
 | 
					
						
							|  |  |  |  *  3  7 11 15
 | 
					
						
							|  |  |  |  */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | WL_EXPORT void
 | 
					
						
							|  |  |  | weston_matrix_init(struct weston_matrix *matrix)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	static const struct weston_matrix identity = {
 | 
					
						
							|  |  |  | 		.d = { 1, 0, 0, 0,  0, 1, 0, 0,  0, 0, 1, 0,  0, 0, 0, 1 },
 | 
					
						
							|  |  |  | 		.type = 0,
 | 
					
						
							|  |  |  | 	};
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	memcpy(matrix, &identity, sizeof identity);
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* m <- n * m, that is, m is multiplied on the LEFT. */
 | 
					
						
							|  |  |  | WL_EXPORT void
 | 
					
						
							|  |  |  | weston_matrix_multiply(struct weston_matrix *m, const struct weston_matrix *n)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	struct weston_matrix tmp;
 | 
					
						
							|  |  |  | 	const float *row, *column;
 | 
					
						
							|  |  |  | 	div_t d;
 | 
					
						
							|  |  |  | 	int i, j;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (i = 0; i < 16; i++) {
 | 
					
						
							|  |  |  | 		tmp.d[i] = 0;
 | 
					
						
							|  |  |  | 		d = div(i, 4);
 | 
					
						
							|  |  |  | 		row = m->d + d.quot * 4;
 | 
					
						
							|  |  |  | 		column = n->d + d.rem;
 | 
					
						
							|  |  |  | 		for (j = 0; j < 4; j++)
 | 
					
						
							|  |  |  | 			tmp.d[i] += row[j] * column[j * 4];
 | 
					
						
							|  |  |  | 	}
 | 
					
						
							|  |  |  | 	tmp.type = m->type | n->type;
 | 
					
						
							|  |  |  | 	memcpy(m, &tmp, sizeof tmp);
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | WL_EXPORT void
 | 
					
						
							|  |  |  | weston_matrix_translate(struct weston_matrix *matrix, float x, float y, float z)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	struct weston_matrix translate = {
 | 
					
						
							|  |  |  | 		.d = { 1, 0, 0, 0,  0, 1, 0, 0,  0, 0, 1, 0,  x, y, z, 1 },
 | 
					
						
							|  |  |  | 		.type = WESTON_MATRIX_TRANSFORM_TRANSLATE,
 | 
					
						
							|  |  |  | 	};
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	weston_matrix_multiply(matrix, &translate);
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | WL_EXPORT void
 | 
					
						
							|  |  |  | weston_matrix_scale(struct weston_matrix *matrix, float x, float y,float z)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	struct weston_matrix scale = {
 | 
					
						
							|  |  |  | 		.d = { x, 0, 0, 0,  0, y, 0, 0,  0, 0, z, 0,  0, 0, 0, 1 },
 | 
					
						
							|  |  |  | 		.type = WESTON_MATRIX_TRANSFORM_SCALE,
 | 
					
						
							|  |  |  | 	};
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	weston_matrix_multiply(matrix, &scale);
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | WL_EXPORT void
 | 
					
						
							|  |  |  | weston_matrix_rotate_xy(struct weston_matrix *matrix, float cos, float sin)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	struct weston_matrix translate = {
 | 
					
						
							|  |  |  | 		.d = { cos, sin, 0, 0,  -sin, cos, 0, 0,  0, 0, 1, 0,  0, 0, 0, 1 },
 | 
					
						
							|  |  |  | 		.type = WESTON_MATRIX_TRANSFORM_ROTATE,
 | 
					
						
							|  |  |  | 	};
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	weston_matrix_multiply(matrix, &translate);
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* v <- m * v */
 | 
					
						
							|  |  |  | WL_EXPORT void
 | 
					
						
							|  |  |  | weston_matrix_transform(struct weston_matrix *matrix, struct weston_vector *v)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	int i, j;
 | 
					
						
							|  |  |  | 	struct weston_vector t;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (i = 0; i < 4; i++) {
 | 
					
						
							|  |  |  | 		t.f[i] = 0;
 | 
					
						
							|  |  |  | 		for (j = 0; j < 4; j++)
 | 
					
						
							|  |  |  | 			t.f[i] += v->f[j] * matrix->d[i + j * 4];
 | 
					
						
							|  |  |  | 	}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	*v = t;
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static inline void
 | 
					
						
							|  |  |  | swap_rows(double *a, double *b)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	unsigned k;
 | 
					
						
							|  |  |  | 	double tmp;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (k = 0; k < 13; k += 4) {
 | 
					
						
							|  |  |  | 		tmp = a[k];
 | 
					
						
							|  |  |  | 		a[k] = b[k];
 | 
					
						
							|  |  |  | 		b[k] = tmp;
 | 
					
						
							|  |  |  | 	}
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static inline void
 | 
					
						
							|  |  |  | swap_unsigned(unsigned *a, unsigned *b)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	unsigned tmp;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	tmp = *a;
 | 
					
						
							|  |  |  | 	*a = *b;
 | 
					
						
							|  |  |  | 	*b = tmp;
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static inline unsigned
 | 
					
						
							|  |  |  | find_pivot(double *column, unsigned k)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	unsigned p = k;
 | 
					
						
							|  |  |  | 	for (++k; k < 4; ++k)
 | 
					
						
							|  |  |  | 		if (fabs(column[p]) < fabs(column[k]))
 | 
					
						
							|  |  |  | 			p = k;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return p;
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * reference: Gene H. Golub and Charles F. van Loan. Matrix computations.
 | 
					
						
							|  |  |  |  * 3rd ed. The Johns Hopkins University Press. 1996.
 | 
					
						
							|  |  |  |  * LU decomposition, forward and back substitution: Chapter 3.
 | 
					
						
							|  |  |  |  */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | MATRIX_TEST_EXPORT inline int
 | 
					
						
							|  |  |  | matrix_invert(double *A, unsigned *p, const struct weston_matrix *matrix)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	unsigned i, j, k;
 | 
					
						
							|  |  |  | 	unsigned pivot;
 | 
					
						
							|  |  |  | 	double pv;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (i = 0; i < 4; ++i)
 | 
					
						
							|  |  |  | 		p[i] = i;
 | 
					
						
							|  |  |  | 	for (i = 16; i--; )
 | 
					
						
							|  |  |  | 		A[i] = matrix->d[i];
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* LU decomposition with partial pivoting */
 | 
					
						
							|  |  |  | 	for (k = 0; k < 4; ++k) {
 | 
					
						
							|  |  |  | 		pivot = find_pivot(&A[k * 4], k);
 | 
					
						
							|  |  |  | 		if (pivot != k) {
 | 
					
						
							|  |  |  | 			swap_unsigned(&p[k], &p[pivot]);
 | 
					
						
							|  |  |  | 			swap_rows(&A[k], &A[pivot]);
 | 
					
						
							|  |  |  | 		}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		pv = A[k * 4 + k];
 | 
					
						
							|  |  |  | 		if (fabs(pv) < 1e-9)
 | 
					
						
							|  |  |  | 			return -1; /* zero pivot, not invertible */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (i = k + 1; i < 4; ++i) {
 | 
					
						
							|  |  |  | 			A[i + k * 4] /= pv;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (j = k + 1; j < 4; ++j)
 | 
					
						
							|  |  |  | 				A[i + j * 4] -= A[i + k * 4] * A[k + j * 4];
 | 
					
						
							|  |  |  | 		}
 | 
					
						
							|  |  |  | 	}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return 0;
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | MATRIX_TEST_EXPORT inline void
 | 
					
						
							|  |  |  | inverse_transform(const double *LU, const unsigned *p, float *v)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	/* Solve A * x = v, when we have P * A = L * U.
 | 
					
						
							|  |  |  | 	 * P * A * x = P * v  =>  L * U * x = P * v
 | 
					
						
							|  |  |  | 	 * Let U * x = b, then L * b = P * v.
 | 
					
						
							|  |  |  | 	 */
 | 
					
						
							|  |  |  | 	double b[4];
 | 
					
						
							| 
									
										
											  
											
												tests: add matrix-test
Add a new directory tests/ for unit test applications. This directory
will be built only if --enable-tests is given to ./configure.
Add matrix-test application. It excercises especially the
weston_matrix_invert() and weston_matrix_inverse_transform() functions.
It has one test for correctness and precision, and other tests for
measuring the speed of various matrix operations.
For the record, the correctness test prints:
a random matrix:
   1.112418e-02   2.628150e+00   8.205844e+02  -1.147526e-04
   4.943677e-04  -1.117819e-04  -9.158849e-06   3.678122e-02
   7.915063e-03  -3.093254e-04  -4.376583e+02   3.424706e-02
  -2.504038e+02   2.481788e+03  -7.545445e+01   1.752909e-03
The matrix multiplied by its inverse, error:
   0.000000e+00  -0.000000e+00  -0.000000e+00  -0.000000e+00
   0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00
  -0.000000e+00  -0.000000e+00   0.000000e+00  -0.000000e+00
   0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00
max abs error: 0, original determinant 11595.2
Running a test loop for 10 seconds...
test fail, det: -0.00464805, error sup: inf
test fail, det: -0.0424053, error sup: 1.30787e-06
test fail, det: 5.15191, error sup: 1.15956e-06
tests: 6791767 ok, 1 not invertible but ok, 3 failed.
Total: 6791771 iterations.
These results are expected with the current precision thresholds in
src/matrix.c and tests/matrix-test.c. The random number generator is
seeded with a constant, so the random numbers should be the same on
every run. Machine speed and scheduling affect how many iterations are
run.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
											
										 
											14 years ago
										 |  |  | 	unsigned j;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Forward substitution, column version, solves L * b = P * v */
 | 
					
						
							|  |  |  | 	/* The diagonal of L is all ones, and not explicitly stored. */
 | 
					
						
							|  |  |  | 	b[0] = v[p[0]];
 | 
					
						
							|  |  |  | 	b[1] = (double)v[p[1]] - b[0] * LU[1 + 0 * 4];
 | 
					
						
							|  |  |  | 	b[2] = (double)v[p[2]] - b[0] * LU[2 + 0 * 4];
 | 
					
						
							|  |  |  | 	b[3] = (double)v[p[3]] - b[0] * LU[3 + 0 * 4];
 | 
					
						
							|  |  |  | 	b[2] -= b[1] * LU[2 + 1 * 4];
 | 
					
						
							|  |  |  | 	b[3] -= b[1] * LU[3 + 1 * 4];
 | 
					
						
							|  |  |  | 	b[3] -= b[2] * LU[3 + 2 * 4];
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* backward substitution, column version, solves U * y = b */
 | 
					
						
							|  |  |  | #if 1
 | 
					
						
							|  |  |  | 	/* hand-unrolled, 25% faster for whole function */
 | 
					
						
							|  |  |  | 	b[3] /= LU[3 + 3 * 4];
 | 
					
						
							|  |  |  | 	b[0] -= b[3] * LU[0 + 3 * 4];
 | 
					
						
							|  |  |  | 	b[1] -= b[3] * LU[1 + 3 * 4];
 | 
					
						
							|  |  |  | 	b[2] -= b[3] * LU[2 + 3 * 4];
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	b[2] /= LU[2 + 2 * 4];
 | 
					
						
							|  |  |  | 	b[0] -= b[2] * LU[0 + 2 * 4];
 | 
					
						
							|  |  |  | 	b[1] -= b[2] * LU[1 + 2 * 4];
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	b[1] /= LU[1 + 1 * 4];
 | 
					
						
							|  |  |  | 	b[0] -= b[1] * LU[0 + 1 * 4];
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	b[0] /= LU[0 + 0 * 4];
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 	for (j = 3; j > 0; --j) {
 | 
					
						
							| 
									
										
											  
											
												tests: add matrix-test
Add a new directory tests/ for unit test applications. This directory
will be built only if --enable-tests is given to ./configure.
Add matrix-test application. It excercises especially the
weston_matrix_invert() and weston_matrix_inverse_transform() functions.
It has one test for correctness and precision, and other tests for
measuring the speed of various matrix operations.
For the record, the correctness test prints:
a random matrix:
   1.112418e-02   2.628150e+00   8.205844e+02  -1.147526e-04
   4.943677e-04  -1.117819e-04  -9.158849e-06   3.678122e-02
   7.915063e-03  -3.093254e-04  -4.376583e+02   3.424706e-02
  -2.504038e+02   2.481788e+03  -7.545445e+01   1.752909e-03
The matrix multiplied by its inverse, error:
   0.000000e+00  -0.000000e+00  -0.000000e+00  -0.000000e+00
   0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00
  -0.000000e+00  -0.000000e+00   0.000000e+00  -0.000000e+00
   0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00
max abs error: 0, original determinant 11595.2
Running a test loop for 10 seconds...
test fail, det: -0.00464805, error sup: inf
test fail, det: -0.0424053, error sup: 1.30787e-06
test fail, det: 5.15191, error sup: 1.15956e-06
tests: 6791767 ok, 1 not invertible but ok, 3 failed.
Total: 6791771 iterations.
These results are expected with the current precision thresholds in
src/matrix.c and tests/matrix-test.c. The random number generator is
seeded with a constant, so the random numbers should be the same on
every run. Machine speed and scheduling affect how many iterations are
run.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
											
										 
											14 years ago
										 |  |  | 		unsigned k;
 | 
					
						
							|  |  |  | 		b[j] /= LU[j + j * 4];
 | 
					
						
							|  |  |  | 		for (k = 0; k < j; ++k)
 | 
					
						
							|  |  |  | 			b[k] -= b[j] * LU[k + j * 4];
 | 
					
						
							|  |  |  | 	}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	b[0] /= LU[0 + 0 * 4];
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* the result */
 | 
					
						
							|  |  |  | 	for (j = 0; j < 4; ++j)
 | 
					
						
							|  |  |  | 		v[j] = b[j];
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | WL_EXPORT int
 | 
					
						
							|  |  |  | weston_matrix_invert(struct weston_matrix *inverse,
 | 
					
						
							|  |  |  | 		     const struct weston_matrix *matrix)
 | 
					
						
							|  |  |  | {
 | 
					
						
							|  |  |  | 	double LU[16];		/* column-major */
 | 
					
						
							|  |  |  | 	unsigned perm[4];	/* permutation */
 | 
					
						
							|  |  |  | 	unsigned c;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (matrix_invert(LU, perm, matrix) < 0)
 | 
					
						
							|  |  |  | 		return -1;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	weston_matrix_init(inverse);
 | 
					
						
							|  |  |  | 	for (c = 0; c < 4; ++c)
 | 
					
						
							|  |  |  | 		inverse_transform(LU, perm, &inverse->d[c * 4]);
 | 
					
						
							|  |  |  | 	inverse->type = matrix->type;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return 0;
 | 
					
						
							|  |  |  | }
 |