Don't use custom PBKDF2 function (#382)

tokarchuk/v1.17
Lunny Xiao 8 years ago committed by GitHub
parent 73710c00a8
commit d771e978a1
  1. 3
      models/user.go
  2. 41
      modules/base/tool.go
  3. 77
      vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go
  4. 6
      vendor/vendor.json

@ -25,6 +25,7 @@ import (
"github.com/Unknwon/com" "github.com/Unknwon/com"
"github.com/go-xorm/xorm" "github.com/go-xorm/xorm"
"github.com/nfnt/resize" "github.com/nfnt/resize"
"golang.org/x/crypto/pbkdf2"
"code.gitea.io/git" "code.gitea.io/git"
api "code.gitea.io/sdk/gitea" api "code.gitea.io/sdk/gitea"
@ -361,7 +362,7 @@ func (u *User) NewGitSig() *git.Signature {
// EncodePasswd encodes password to safe format. // EncodePasswd encodes password to safe format.
func (u *User) EncodePasswd() { func (u *User) EncodePasswd() {
newPasswd := base.PBKDF2([]byte(u.Passwd), []byte(u.Salt), 10000, 50, sha256.New) newPasswd := pbkdf2.Key([]byte(u.Passwd), []byte(u.Salt), 10000, 50, sha256.New)
u.Passwd = fmt.Sprintf("%x", newPasswd) u.Passwd = fmt.Sprintf("%x", newPasswd)
} }

@ -5,14 +5,12 @@
package base package base
import ( import (
"crypto/hmac"
"crypto/md5" "crypto/md5"
"crypto/rand" "crypto/rand"
"crypto/sha1" "crypto/sha1"
"encoding/base64" "encoding/base64"
"encoding/hex" "encoding/hex"
"fmt" "fmt"
"hash"
"html/template" "html/template"
"math" "math"
"net/http" "net/http"
@ -97,45 +95,6 @@ func GetRandomString(n int, alphabets ...byte) string {
return string(bytes) return string(bytes)
} }
// PBKDF2 http://code.google.com/p/go/source/browse/pbkdf2/pbkdf2.go?repo=crypto
// FIXME: use https://godoc.org/golang.org/x/crypto/pbkdf2?
func PBKDF2(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
prf := hmac.New(h, password)
hashLen := prf.Size()
numBlocks := (keyLen + hashLen - 1) / hashLen
var buf [4]byte
dk := make([]byte, 0, numBlocks*hashLen)
U := make([]byte, hashLen)
for block := 1; block <= numBlocks; block++ {
// N.B.: || means concatenation, ^ means XOR
// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
// U_1 = PRF(password, salt || uint(i))
prf.Reset()
prf.Write(salt)
buf[0] = byte(block >> 24)
buf[1] = byte(block >> 16)
buf[2] = byte(block >> 8)
buf[3] = byte(block)
prf.Write(buf[:4])
dk = prf.Sum(dk)
T := dk[len(dk)-hashLen:]
copy(U, T)
// U_n = PRF(password, U_(n-1))
for n := 2; n <= iter; n++ {
prf.Reset()
prf.Write(U)
U = U[:0]
U = prf.Sum(U)
for x := range U {
T[x] ^= U[x]
}
}
}
return dk[:keyLen]
}
// VerifyTimeLimitCode verify time limit code // VerifyTimeLimitCode verify time limit code
func VerifyTimeLimitCode(data string, minutes int, code string) bool { func VerifyTimeLimitCode(data string, minutes int, code string) bool {
if len(code) <= 18 { if len(code) <= 18 {

@ -0,0 +1,77 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
2898 / PKCS #5 v2.0.
A key derivation function is useful when encrypting data based on a password
or any other not-fully-random data. It uses a pseudorandom function to derive
a secure encryption key based on the password.
While v2.0 of the standard defines only one pseudorandom function to use,
HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
choose, you can pass the `New` functions from the different SHA packages to
pbkdf2.Key.
*/
package pbkdf2 // import "golang.org/x/crypto/pbkdf2"
import (
"crypto/hmac"
"hash"
)
// Key derives a key from the password, salt and iteration count, returning a
// []byte of length keylen that can be used as cryptographic key. The key is
// derived based on the method described as PBKDF2 with the HMAC variant using
// the supplied hash function.
//
// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
// doing:
//
// dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
//
// Remember to get a good random salt. At least 8 bytes is recommended by the
// RFC.
//
// Using a higher iteration count will increase the cost of an exhaustive
// search but will also make derivation proportionally slower.
func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
prf := hmac.New(h, password)
hashLen := prf.Size()
numBlocks := (keyLen + hashLen - 1) / hashLen
var buf [4]byte
dk := make([]byte, 0, numBlocks*hashLen)
U := make([]byte, hashLen)
for block := 1; block <= numBlocks; block++ {
// N.B.: || means concatenation, ^ means XOR
// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
// U_1 = PRF(password, salt || uint(i))
prf.Reset()
prf.Write(salt)
buf[0] = byte(block >> 24)
buf[1] = byte(block >> 16)
buf[2] = byte(block >> 8)
buf[3] = byte(block)
prf.Write(buf[:4])
dk = prf.Sum(dk)
T := dk[len(dk)-hashLen:]
copy(U, T)
// U_n = PRF(password, U_(n-1))
for n := 2; n <= iter; n++ {
prf.Reset()
prf.Write(U)
U = U[:0]
U = prf.Sum(U)
for x := range U {
T[x] ^= U[x]
}
}
}
return dk[:keyLen]
}

@ -872,6 +872,12 @@
"revision": "9477e0b78b9ac3d0b03822fd95422e2fe07627cd", "revision": "9477e0b78b9ac3d0b03822fd95422e2fe07627cd",
"revisionTime": "2016-10-31T15:37:30Z" "revisionTime": "2016-10-31T15:37:30Z"
}, },
{
"checksumSHA1": "1MGpGDQqnUoRpv7VEcQrXOBydXE=",
"path": "golang.org/x/crypto/pbkdf2",
"revision": "8e06e8ddd9629eb88639aba897641bff8031f1d3",
"revisionTime": "2016-09-10T18:59:01Z"
},
{ {
"checksumSHA1": "LlElMHeTC34ng8eHzjvtUhAgrr8=", "checksumSHA1": "LlElMHeTC34ng8eHzjvtUhAgrr8=",
"path": "golang.org/x/crypto/ssh", "path": "golang.org/x/crypto/ssh",

Loading…
Cancel
Save