You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
weston/src/pixman-renderer.c

814 lines
23 KiB

/*
* Copyright © 2012 Intel Corporation
* Copyright © 2013 Vasily Khoruzhick <anarsoul@gmail.com>
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of the copyright holders not be used in
* advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. The copyright holders make
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "config.h"
#include <errno.h>
#include <stdlib.h>
#include "pixman-renderer.h"
#include <linux/input.h>
struct pixman_output_state {
void *shadow_buffer;
pixman_image_t *shadow_image;
pixman_image_t *hw_buffer;
};
struct pixman_surface_state {
struct weston_surface *surface;
pixman_image_t *image;
struct weston_buffer_reference buffer_ref;
struct wl_listener surface_destroy_listener;
struct wl_listener renderer_destroy_listener;
};
struct pixman_renderer {
struct weston_renderer base;
int repaint_debug;
pixman_image_t *debug_color;
struct weston_binding *debug_binding;
struct wl_signal destroy_signal;
};
static inline struct pixman_output_state *
get_output_state(struct weston_output *output)
{
return (struct pixman_output_state *)output->renderer_state;
}
static int
pixman_renderer_create_surface(struct weston_surface *surface);
static inline struct pixman_surface_state *
get_surface_state(struct weston_surface *surface)
{
if (!surface->renderer_state)
pixman_renderer_create_surface(surface);
return (struct pixman_surface_state *)surface->renderer_state;
}
static inline struct pixman_renderer *
get_renderer(struct weston_compositor *ec)
{
return (struct pixman_renderer *)ec->renderer;
}
static int
pixman_renderer_read_pixels(struct weston_output *output,
pixman_format_code_t format, void *pixels,
uint32_t x, uint32_t y,
uint32_t width, uint32_t height)
{
struct pixman_output_state *po = get_output_state(output);
pixman_transform_t transform;
pixman_image_t *out_buf;
if (!po->hw_buffer) {
errno = ENODEV;
return -1;
}
out_buf = pixman_image_create_bits(format,
width,
height,
pixels,
(PIXMAN_FORMAT_BPP(format) / 8) * width);
/* Caller expects vflipped source image */
pixman_transform_init_translate(&transform,
pixman_int_to_fixed (x),
pixman_int_to_fixed (y - pixman_image_get_height (po->hw_buffer)));
pixman_transform_scale(&transform, NULL,
pixman_fixed_1,
pixman_fixed_minus_1);
pixman_image_set_transform(po->hw_buffer, &transform);
pixman_image_composite32(PIXMAN_OP_SRC,
po->hw_buffer, /* src */
NULL /* mask */,
out_buf, /* dest */
0, 0, /* src_x, src_y */
0, 0, /* mask_x, mask_y */
0, 0, /* dest_x, dest_y */
pixman_image_get_width (po->hw_buffer), /* width */
pixman_image_get_height (po->hw_buffer) /* height */);
pixman_image_set_transform(po->hw_buffer, NULL);
pixman_image_unref(out_buf);
return 0;
}
static void
box_scale(pixman_box32_t *dst, int scale)
{
dst->x1 *= scale;
dst->x2 *= scale;
dst->y1 *= scale;
dst->y2 *= scale;
}
static void
scale_region (pixman_region32_t *region, int scale)
{
pixman_box32_t *rects, *scaled_rects;
int nrects, i;
if (scale != 1) {
rects = pixman_region32_rectangles(region, &nrects);
scaled_rects = calloc(nrects, sizeof(pixman_box32_t));
for (i = 0; i < nrects; i++) {
scaled_rects[i] = rects[i];
box_scale(&scaled_rects[i], scale);
}
pixman_region32_clear(region);
pixman_region32_init_rects (region, scaled_rects, nrects);
free (scaled_rects);
}
}
static void
transform_region (pixman_region32_t *region, int width, int height, enum wl_output_transform transform)
{
pixman_box32_t *rects, *transformed_rects;
int nrects, i;
if (transform == WL_OUTPUT_TRANSFORM_NORMAL)
return;
rects = pixman_region32_rectangles(region, &nrects);
transformed_rects = calloc(nrects, sizeof(pixman_box32_t));
for (i = 0; i < nrects; i++) {
switch (transform) {
default:
case WL_OUTPUT_TRANSFORM_NORMAL:
transformed_rects[i].x1 = rects[i].x1;
transformed_rects[i].y1 = rects[i].y1;
transformed_rects[i].x2 = rects[i].x2;
transformed_rects[i].y2 = rects[i].y2;
break;
case WL_OUTPUT_TRANSFORM_90:
transformed_rects[i].x1 = height - rects[i].y2;
transformed_rects[i].y1 = rects[i].x1;
transformed_rects[i].x2 = height - rects[i].y1;
transformed_rects[i].y2 = rects[i].x2;
break;
case WL_OUTPUT_TRANSFORM_180:
transformed_rects[i].x1 = width - rects[i].x2;
transformed_rects[i].y1 = height - rects[i].y2;
transformed_rects[i].x2 = width - rects[i].x1;
transformed_rects[i].y2 = height - rects[i].y1;
break;
case WL_OUTPUT_TRANSFORM_270:
transformed_rects[i].x1 = rects[i].y1;
transformed_rects[i].y1 = width - rects[i].x2;
transformed_rects[i].x2 = rects[i].y2;
transformed_rects[i].y2 = width - rects[i].x1;
break;
case WL_OUTPUT_TRANSFORM_FLIPPED:
transformed_rects[i].x1 = width - rects[i].x2;
transformed_rects[i].y1 = rects[i].y1;
transformed_rects[i].x2 = width - rects[i].x1;
transformed_rects[i].y2 = rects[i].y2;
break;
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
transformed_rects[i].x1 = height - rects[i].y2;
transformed_rects[i].y1 = width - rects[i].x2;
transformed_rects[i].x2 = height - rects[i].y1;
transformed_rects[i].y2 = width - rects[i].x1;
break;
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
transformed_rects[i].x1 = rects[i].x1;
transformed_rects[i].y1 = height - rects[i].y2;
transformed_rects[i].x2 = rects[i].x2;
transformed_rects[i].y2 = height - rects[i].y1;
break;
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
transformed_rects[i].x1 = rects[i].y1;
transformed_rects[i].y1 = rects[i].x1;
transformed_rects[i].x2 = rects[i].y2;
transformed_rects[i].y2 = rects[i].x2;
break;
}
}
pixman_region32_clear(region);
pixman_region32_init_rects (region, transformed_rects, nrects);
free (transformed_rects);
}
static void
region_global_to_output(struct weston_output *output, pixman_region32_t *region)
{
pixman_region32_translate(region, -output->x, -output->y);
transform_region (region, output->width, output->height, output->transform);
scale_region (region, output->current_scale);
}
#define D2F(v) pixman_double_to_fixed((double)v)
static void
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
repaint_region(struct weston_view *ev, struct weston_output *output,
pixman_region32_t *region, pixman_region32_t *surf_region,
pixman_op_t pixman_op)
{
struct pixman_renderer *pr =
(struct pixman_renderer *) output->compositor->renderer;
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
struct pixman_surface_state *ps = get_surface_state(ev->surface);
struct pixman_output_state *po = get_output_state(output);
pixman_region32_t final_region;
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
float view_x, view_y;
pixman_transform_t transform;
pixman_fixed_t fw, fh;
/* The final region to be painted is the intersection of
* 'region' and 'surf_region'. However, 'region' is in the global
* coordinates, and 'surf_region' is in the surface-local
* coordinates
*/
pixman_region32_init(&final_region);
if (surf_region) {
pixman_region32_copy(&final_region, surf_region);
/* Convert from surface to global coordinates */
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
if (!ev->transform.enabled) {
pixman_region32_translate(&final_region, ev->geometry.x, ev->geometry.y);
} else {
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
weston_view_to_global_float(ev, 0, 0, &view_x, &view_y);
pixman_region32_translate(&final_region, (int)view_x, (int)view_y);
}
/* We need to paint the intersection */
pixman_region32_intersect(&final_region, &final_region, region);
} else {
/* If there is no surface region, just use the global region */
pixman_region32_copy(&final_region, region);
}
/* Convert from global to output coord */
region_global_to_output(output, &final_region);
/* And clip to it */
pixman_image_set_clip_region32 (po->shadow_image, &final_region);
/* Set up the source transformation based on the surface
position, the output position/transform/scale and the client
specified buffer transform/scale */
pixman_transform_init_identity(&transform);
pixman_transform_scale(&transform, NULL,
pixman_double_to_fixed ((double)1.0/output->current_scale),
pixman_double_to_fixed ((double)1.0/output->current_scale));
fw = pixman_int_to_fixed(output->width);
fh = pixman_int_to_fixed(output->height);
switch (output->transform) {
default:
case WL_OUTPUT_TRANSFORM_NORMAL:
case WL_OUTPUT_TRANSFORM_FLIPPED:
break;
case WL_OUTPUT_TRANSFORM_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
pixman_transform_rotate(&transform, NULL, 0, -pixman_fixed_1);
pixman_transform_translate(&transform, NULL, 0, fh);
break;
case WL_OUTPUT_TRANSFORM_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
pixman_transform_rotate(&transform, NULL, -pixman_fixed_1, 0);
pixman_transform_translate(&transform, NULL, fw, fh);
break;
case WL_OUTPUT_TRANSFORM_270:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
pixman_transform_rotate(&transform, NULL, 0, pixman_fixed_1);
pixman_transform_translate(&transform, NULL, fw, 0);
break;
}
switch (output->transform) {
case WL_OUTPUT_TRANSFORM_FLIPPED:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
pixman_transform_scale(&transform, NULL,
pixman_int_to_fixed (-1),
pixman_int_to_fixed (1));
pixman_transform_translate(&transform, NULL, fw, 0);
break;
}
pixman_transform_translate(&transform, NULL,
pixman_double_to_fixed (output->x),
pixman_double_to_fixed (output->y));
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
if (ev->transform.enabled) {
/* Pixman supports only 2D transform matrix, but Weston uses 3D,
* so we're omitting Z coordinate here
*/
pixman_transform_t surface_transform = {{
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
{ D2F(ev->transform.matrix.d[0]),
D2F(ev->transform.matrix.d[4]),
D2F(ev->transform.matrix.d[12]),
},
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
{ D2F(ev->transform.matrix.d[1]),
D2F(ev->transform.matrix.d[5]),
D2F(ev->transform.matrix.d[13]),
},
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
{ D2F(ev->transform.matrix.d[3]),
D2F(ev->transform.matrix.d[7]),
D2F(ev->transform.matrix.d[15]),
}
}};
pixman_transform_invert(&surface_transform, &surface_transform);
pixman_transform_multiply (&transform, &surface_transform, &transform);
} else {
pixman_transform_translate(&transform, NULL,
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
pixman_double_to_fixed ((double)-ev->geometry.x),
pixman_double_to_fixed ((double)-ev->geometry.y));
}
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
fw = pixman_int_to_fixed(ev->geometry.width);
fh = pixman_int_to_fixed(ev->geometry.height);
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
switch (ev->surface->buffer_transform) {
case WL_OUTPUT_TRANSFORM_FLIPPED:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
pixman_transform_scale(&transform, NULL,
pixman_int_to_fixed (-1),
pixman_int_to_fixed (1));
pixman_transform_translate(&transform, NULL, fw, 0);
break;
}
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
switch (ev->surface->buffer_transform) {
default:
case WL_OUTPUT_TRANSFORM_NORMAL:
case WL_OUTPUT_TRANSFORM_FLIPPED:
break;
case WL_OUTPUT_TRANSFORM_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
pixman_transform_rotate(&transform, NULL, 0, pixman_fixed_1);
pixman_transform_translate(&transform, NULL, fh, 0);
break;
case WL_OUTPUT_TRANSFORM_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
pixman_transform_rotate(&transform, NULL, -pixman_fixed_1, 0);
pixman_transform_translate(&transform, NULL, fw, fh);
break;
case WL_OUTPUT_TRANSFORM_270:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
pixman_transform_rotate(&transform, NULL, 0, -pixman_fixed_1);
pixman_transform_translate(&transform, NULL, 0, fw);
break;
}
pixman_transform_scale(&transform, NULL,
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
pixman_double_to_fixed ((double)ev->surface->buffer_scale),
pixman_double_to_fixed ((double)ev->surface->buffer_scale));
pixman_image_set_transform(ps->image, &transform);
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
if (ev->transform.enabled || output->current_scale != ev->surface->buffer_scale)
pixman_image_set_filter(ps->image, PIXMAN_FILTER_BILINEAR, NULL, 0);
else
pixman_image_set_filter(ps->image, PIXMAN_FILTER_NEAREST, NULL, 0);
pixman_image_composite32(pixman_op,
ps->image, /* src */
NULL /* mask */,
po->shadow_image, /* dest */
0, 0, /* src_x, src_y */
0, 0, /* mask_x, mask_y */
0, 0, /* dest_x, dest_y */
pixman_image_get_width (po->shadow_image), /* width */
pixman_image_get_height (po->shadow_image) /* height */);
if (pr->repaint_debug)
pixman_image_composite32(PIXMAN_OP_OVER,
pr->debug_color, /* src */
NULL /* mask */,
po->shadow_image, /* dest */
0, 0, /* src_x, src_y */
0, 0, /* mask_x, mask_y */
0, 0, /* dest_x, dest_y */
pixman_image_get_width (po->shadow_image), /* width */
pixman_image_get_height (po->shadow_image) /* height */);
pixman_image_set_clip_region32 (po->shadow_image, NULL);
pixman_region32_fini(&final_region);
}
static void
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
draw_view(struct weston_view *ev, struct weston_output *output,
pixman_region32_t *damage) /* in global coordinates */
{
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
struct pixman_surface_state *ps = get_surface_state(ev->surface);
/* repaint bounding region in global coordinates: */
pixman_region32_t repaint;
/* non-opaque region in surface coordinates: */
pixman_region32_t surface_blend;
/* No buffer attached */
if (!ps->image)
return;
pixman_region32_init(&repaint);
pixman_region32_intersect(&repaint,
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
&ev->transform.boundingbox, damage);
pixman_region32_subtract(&repaint, &repaint, &ev->clip);
if (!pixman_region32_not_empty(&repaint))
goto out;
if (output->zoom.active) {
weston_log("pixman renderer does not support zoom\n");
goto out;
}
/* TODO: Implement repaint_region_complex() using pixman_composite_trapezoids() */
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
if (ev->transform.enabled &&
ev->transform.matrix.type != WESTON_MATRIX_TRANSFORM_TRANSLATE) {
repaint_region(ev, output, &repaint, NULL, PIXMAN_OP_OVER);
} else {
/* blended region is whole surface minus opaque region: */
pixman_region32_init_rect(&surface_blend, 0, 0,
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
ev->geometry.width, ev->geometry.height);
pixman_region32_subtract(&surface_blend, &surface_blend, &ev->surface->opaque);
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
if (pixman_region32_not_empty(&ev->surface->opaque)) {
repaint_region(ev, output, &repaint, &ev->surface->opaque, PIXMAN_OP_SRC);
}
if (pixman_region32_not_empty(&surface_blend)) {
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
repaint_region(ev, output, &repaint, &surface_blend, PIXMAN_OP_OVER);
}
pixman_region32_fini(&surface_blend);
}
out:
pixman_region32_fini(&repaint);
}
static void
repaint_surfaces(struct weston_output *output, pixman_region32_t *damage)
{
struct weston_compositor *compositor = output->compositor;
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
struct weston_view *view;
Split the geometry information from weston_surface out into weston_view The weston_surface structure is split into two structures: * The weston_surface structure storres everything required for a client-side or server-side surface. This includes buffers; callbacks; backend private data; input, damage, and opaque regions; and a few other bookkeeping bits. * The weston_view structure represents an entity in the scenegraph and storres all of the geometry information. This includes clip region, alpha, position, and the transformation list as well as all of the temporary information derived from the geometry state. Because a view, and not a surface, is a scenegraph element, the view is what is placed in layers and planes. There are a few things worth noting about the surface/view split: 1. This is *not* a modification to the protocol. It is, instead, a modification to Weston's internal scenegraph to allow a single surface to exist in multiple places at a time. Clients are completely unaware of how many views to a particular surface exist. 2. A view is considered a direct child of a surface and is destroyed when the surface is destroyed. Because of this, the view.surface pointer is always valid and non-null. 3. The compositor's surface_list is replaced with a view_list. Due to subsurfaces, building the view list is a little more complicated than it used to be and involves building a tree of views on the fly whenever subsurfaces are used. However, this means that backends can remain completely subsurface-agnostic. 4. Surfaces and views both keep track of which outputs they are on. 5. The weston_surface structure now has width and height fields. These are populated when a new buffer is attached before surface.configure is called. This is because there are many surface-based operations that really require the width and height and digging through the views didn't work well. Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
11 years ago
wl_list_for_each_reverse(view, &compositor->view_list, link)
if (view->plane == &compositor->primary_plane)
draw_view(view, output, damage);
}
static void
copy_to_hw_buffer(struct weston_output *output, pixman_region32_t *region)
{
struct pixman_output_state *po = get_output_state(output);
pixman_region32_t output_region;
pixman_region32_init(&output_region);
pixman_region32_copy(&output_region, region);
region_global_to_output(output, &output_region);
pixman_image_set_clip_region32 (po->hw_buffer, &output_region);
pixman_image_composite32(PIXMAN_OP_SRC,
po->shadow_image, /* src */
NULL /* mask */,
po->hw_buffer, /* dest */
0, 0, /* src_x, src_y */
0, 0, /* mask_x, mask_y */
0, 0, /* dest_x, dest_y */
pixman_image_get_width (po->hw_buffer), /* width */
pixman_image_get_height (po->hw_buffer) /* height */);
pixman_image_set_clip_region32 (po->hw_buffer, NULL);
}
static void
pixman_renderer_repaint_output(struct weston_output *output,
pixman_region32_t *output_damage)
{
struct pixman_output_state *po = get_output_state(output);
if (!po->hw_buffer)
return;
repaint_surfaces(output, output_damage);
copy_to_hw_buffer(output, output_damage);
pixman_region32_copy(&output->previous_damage, output_damage);
wl_signal_emit(&output->frame_signal, output);
/* Actual flip should be done by caller */
}
static void
pixman_renderer_flush_damage(struct weston_surface *surface)
{
/* No-op for pixman renderer */
}
static void
pixman_renderer_attach(struct weston_surface *es, struct weston_buffer *buffer)
{
struct pixman_surface_state *ps = get_surface_state(es);
struct wl_shm_buffer *shm_buffer;
pixman_format_code_t pixman_format;
weston_buffer_reference(&ps->buffer_ref, buffer);
if (ps->image) {
pixman_image_unref(ps->image);
ps->image = NULL;
}
if (!buffer)
return;
shm_buffer = wl_shm_buffer_get(buffer->resource);
if (! shm_buffer) {
weston_log("Pixman renderer supports only SHM buffers\n");
weston_buffer_reference(&ps->buffer_ref, NULL);
return;
}
switch (wl_shm_buffer_get_format(shm_buffer)) {
case WL_SHM_FORMAT_XRGB8888:
pixman_format = PIXMAN_x8r8g8b8;
break;
case WL_SHM_FORMAT_ARGB8888:
pixman_format = PIXMAN_a8r8g8b8;
break;
case WL_SHM_FORMAT_RGB565:
pixman_format = PIXMAN_r5g6b5;
break;
default:
weston_log("Unsupported SHM buffer format\n");
weston_buffer_reference(&ps->buffer_ref, NULL);
return;
break;
}
buffer->shm_buffer = shm_buffer;
buffer->width = wl_shm_buffer_get_width(shm_buffer);
buffer->height = wl_shm_buffer_get_height(shm_buffer);
ps->image = pixman_image_create_bits(pixman_format,
buffer->width, buffer->height,
wl_shm_buffer_get_data(shm_buffer),
wl_shm_buffer_get_stride(shm_buffer));
}
static void
pixman_renderer_surface_state_destroy(struct pixman_surface_state *ps)
{
wl_list_remove(&ps->surface_destroy_listener.link);
wl_list_remove(&ps->renderer_destroy_listener.link);
ps->surface->renderer_state = NULL;
if (ps->image) {
pixman_image_unref(ps->image);
ps->image = NULL;
}
weston_buffer_reference(&ps->buffer_ref, NULL);
free(ps);
}
static void
surface_state_handle_surface_destroy(struct wl_listener *listener, void *data)
{
struct pixman_surface_state *ps;
ps = container_of(listener, struct pixman_surface_state,
surface_destroy_listener);
pixman_renderer_surface_state_destroy(ps);
}
static void
surface_state_handle_renderer_destroy(struct wl_listener *listener, void *data)
{
struct pixman_surface_state *ps;
ps = container_of(listener, struct pixman_surface_state,
renderer_destroy_listener);
pixman_renderer_surface_state_destroy(ps);
}
static int
pixman_renderer_create_surface(struct weston_surface *surface)
{
struct pixman_surface_state *ps;
struct pixman_renderer *pr = get_renderer(surface->compositor);
ps = calloc(1, sizeof *ps);
if (!ps)
return -1;
surface->renderer_state = ps;
ps->surface = surface;
ps->surface_destroy_listener.notify =
surface_state_handle_surface_destroy;
wl_signal_add(&surface->destroy_signal,
&ps->surface_destroy_listener);
ps->renderer_destroy_listener.notify =
surface_state_handle_renderer_destroy;
wl_signal_add(&pr->destroy_signal,
&ps->renderer_destroy_listener);
return 0;
}
static void
pixman_renderer_surface_set_color(struct weston_surface *es,
float red, float green, float blue, float alpha)
{
struct pixman_surface_state *ps = get_surface_state(es);
pixman_color_t color;
color.red = red * 0xffff;
color.green = green * 0xffff;
color.blue = blue * 0xffff;
color.alpha = alpha * 0xffff;
if (ps->image) {
pixman_image_unref(ps->image);
ps->image = NULL;
}
ps->image = pixman_image_create_solid_fill(&color);
}
static void
pixman_renderer_destroy(struct weston_compositor *ec)
{
struct pixman_renderer *pr = get_renderer(ec);
wl_signal_emit(&pr->destroy_signal, pr);
weston_binding_destroy(pr->debug_binding);
free(pr);
ec->renderer = NULL;
}
static void
debug_binding(struct weston_seat *seat, uint32_t time, uint32_t key,
void *data)
{
struct weston_compositor *ec = data;
struct pixman_renderer *pr = (struct pixman_renderer *) ec->renderer;
pr->repaint_debug ^= 1;
if (pr->repaint_debug) {
pixman_color_t red = {
0x3fff, 0x0000, 0x0000, 0x3fff
};
pr->debug_color = pixman_image_create_solid_fill(&red);
} else {
pixman_image_unref(pr->debug_color);
weston_compositor_damage_all(ec);
}
}
WL_EXPORT int
pixman_renderer_init(struct weston_compositor *ec)
{
struct pixman_renderer *renderer;
renderer = calloc(1, sizeof *renderer);
if (renderer == NULL)
return -1;
renderer->repaint_debug = 0;
renderer->debug_color = NULL;
renderer->base.read_pixels = pixman_renderer_read_pixels;
renderer->base.repaint_output = pixman_renderer_repaint_output;
renderer->base.flush_damage = pixman_renderer_flush_damage;
renderer->base.attach = pixman_renderer_attach;
renderer->base.surface_set_color = pixman_renderer_surface_set_color;
renderer->base.destroy = pixman_renderer_destroy;
ec->renderer = &renderer->base;
ec->capabilities |= WESTON_CAP_ROTATION_ANY;
ec->capabilities |= WESTON_CAP_CAPTURE_YFLIP;
renderer->debug_binding =
weston_compositor_add_debug_binding(ec, KEY_R,
debug_binding, ec);
wl_display_add_shm_format(ec->wl_display, WL_SHM_FORMAT_RGB565);
wl_signal_init(&renderer->destroy_signal);
return 0;
}
WL_EXPORT void
pixman_renderer_output_set_buffer(struct weston_output *output, pixman_image_t *buffer)
{
struct pixman_output_state *po = get_output_state(output);
if (po->hw_buffer)
pixman_image_unref(po->hw_buffer);
po->hw_buffer = buffer;
if (po->hw_buffer) {
output->compositor->read_format = pixman_image_get_format(po->hw_buffer);
pixman_image_ref(po->hw_buffer);
}
}
WL_EXPORT int
pixman_renderer_output_create(struct weston_output *output)
{
struct pixman_output_state *po = calloc(1, sizeof *po);
int w, h;
if (!po)
return -1;
/* set shadow image transformation */
w = output->current_mode->width;
h = output->current_mode->height;
po->shadow_buffer = malloc(w * h * 4);
if (!po->shadow_buffer) {
free(po);
return -1;
}
po->shadow_image =
pixman_image_create_bits(PIXMAN_x8r8g8b8, w, h,
po->shadow_buffer, w * 4);
if (!po->shadow_image) {
free(po->shadow_buffer);
free(po);
return -1;
}
output->renderer_state = po;
return 0;
}
WL_EXPORT void
pixman_renderer_output_destroy(struct weston_output *output)
{
struct pixman_output_state *po = get_output_state(output);
pixman_image_unref(po->shadow_image);
if (po->hw_buffer)
pixman_image_unref(po->hw_buffer);
po->shadow_image = NULL;
po->hw_buffer = NULL;
free(po);
}