compositor: Move surface repaint code to gles2-renderer.c

dev
Kristian Høgsberg 12 years ago
parent d7c172648d
commit ecf6edec1f
  1. 553
      src/compositor.c
  2. 7
      src/compositor.h
  3. 549
      src/gles2-renderer.c

@ -479,8 +479,8 @@ weston_surface_to_global_fixed(struct weston_surface *surface,
*y = wl_fixed_from_double(yf); *y = wl_fixed_from_double(yf);
} }
static void WL_EXPORT void
surface_from_global_float(struct weston_surface *surface, weston_surface_from_global_float(struct weston_surface *surface,
GLfloat x, GLfloat y, GLfloat *sx, GLfloat *sy) GLfloat x, GLfloat y, GLfloat *sx, GLfloat *sy)
{ {
if (surface->transform.enabled) { if (surface->transform.enabled) {
@ -512,7 +512,7 @@ weston_surface_from_global_fixed(struct weston_surface *surface,
{ {
GLfloat sxf, syf; GLfloat sxf, syf;
surface_from_global_float(surface, weston_surface_from_global_float(surface,
wl_fixed_to_double(x), wl_fixed_to_double(x),
wl_fixed_to_double(y), wl_fixed_to_double(y),
&sxf, &syf); &sxf, &syf);
@ -526,7 +526,7 @@ weston_surface_from_global(struct weston_surface *surface,
{ {
GLfloat sxf, syf; GLfloat sxf, syf;
surface_from_global_float(surface, x, y, &sxf, &syf); weston_surface_from_global_float(surface, x, y, &sxf, &syf);
*sx = floorf(sxf); *sx = floorf(sxf);
*sy = floorf(syf); *sy = floorf(syf);
} }
@ -862,551 +862,6 @@ weston_surface_attach(struct wl_surface *surface, struct wl_buffer *buffer)
} }
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) > (b)) ? (b) : (a))
#define clip(x, a, b) min(max(x, a), b)
#define sign(x) ((x) >= 0)
static int
calculate_edges(struct weston_surface *es, pixman_box32_t *rect,
pixman_box32_t *surf_rect, GLfloat *ex, GLfloat *ey)
{
int i, n = 0;
GLfloat min_x, max_x, min_y, max_y;
GLfloat x[4] = {
surf_rect->x1, surf_rect->x2, surf_rect->x2, surf_rect->x1,
};
GLfloat y[4] = {
surf_rect->y1, surf_rect->y1, surf_rect->y2, surf_rect->y2,
};
GLfloat cx1 = rect->x1;
GLfloat cx2 = rect->x2;
GLfloat cy1 = rect->y1;
GLfloat cy2 = rect->y2;
GLfloat dist_squared(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2)
{
GLfloat dx = (x1 - x2);
GLfloat dy = (y1 - y2);
return dx * dx + dy * dy;
}
void append_vertex(GLfloat x, GLfloat y)
{
/* don't emit duplicate vertices: */
if ((n > 0) && (ex[n-1] == x) && (ey[n-1] == y))
return;
ex[n] = x;
ey[n] = y;
n++;
}
/* transform surface to screen space: */
for (i = 0; i < 4; i++)
weston_surface_to_global_float(es, x[i], y[i], &x[i], &y[i]);
/* find bounding box: */
min_x = max_x = x[0];
min_y = max_y = y[0];
for (i = 1; i < 4; i++) {
min_x = min(min_x, x[i]);
max_x = max(max_x, x[i]);
min_y = min(min_y, y[i]);
max_y = max(max_y, y[i]);
}
/* First, simple bounding box check to discard early transformed
* surface rects that do not intersect with the clip region:
*/
if ((min_x > cx2) || (max_x < cx1) ||
(min_y > cy2) || (max_y < cy1))
return 0;
/* Simple case, bounding box edges are parallel to surface edges,
* there will be only four edges. We just need to clip the surface
* vertices to the clip rect bounds:
*/
if (!es->transform.enabled) {
for (i = 0; i < 4; i++) {
ex[n] = clip(x[i], cx1, cx2);
ey[n] = clip(y[i], cy1, cy2);
n++;
}
return 4;
}
/* Hard case, transformation applied. We need to find the vertices
* of the shape that is the intersection of the clip rect and
* transformed surface. This can be anything from 3 to 8 sides.
*
* Observation: all the resulting vertices will be the intersection
* points of the transformed surface and the clip rect, plus the
* vertices of the clip rect which are enclosed by the transformed
* surface and the vertices of the transformed surface which are
* enclosed by the clip rect.
*
* Observation: there will be zero, one, or two resulting vertices
* for each edge of the src rect.
*
* Loop over four edges of the transformed rect:
*/
for (i = 0; i < 4; i++) {
GLfloat x1, y1, x2, y2;
int last_n = n;
x1 = x[i];
y1 = y[i];
/* if this vertex is contained in the clip rect, use it as-is: */
if ((cx1 <= x1) && (x1 <= cx2) &&
(cy1 <= y1) && (y1 <= cy2))
append_vertex(x1, y1);
/* for remaining, we consider the point as part of a line: */
x2 = x[(i+1) % 4];
y2 = y[(i+1) % 4];
if (x1 == x2) {
append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2));
append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2));
} else if (y1 == y2) {
append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2));
append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2));
} else {
GLfloat m, c, p;
GLfloat tx[2], ty[2];
int tn = 0;
int intersect_horiz(GLfloat y, GLfloat *p)
{
GLfloat x;
/* if y does not lie between y1 and y2, no
* intersection possible
*/
if (sign(y-y1) == sign(y-y2))
return 0;
x = (y - c) / m;
/* if x does not lie between cx1 and cx2, no
* intersection:
*/
if (sign(x-cx1) == sign(x-cx2))
return 0;
*p = x;
return 1;
}
int intersect_vert(GLfloat x, GLfloat *p)
{
GLfloat y;
if (sign(x-x1) == sign(x-x2))
return 0;
y = m * x + c;
if (sign(y-cy1) == sign(y-cy2))
return 0;
*p = y;
return 1;
}
/* y = mx + c */
m = (y2 - y1) / (x2 - x1);
c = y1 - m * x1;
/* check for up to two intersections with the four edges
* of the clip rect. Note that we don't know the orientation
* of the transformed surface wrt. the clip rect. So if when
* there are two intersection points, we need to put the one
* closest to x1,y1 first:
*/
/* check top clip rect edge: */
if (intersect_horiz(cy1, &p)) {
ty[tn] = cy1;
tx[tn] = p;
tn++;
}
/* check right clip rect edge: */
if (intersect_vert(cx2, &p)) {
ty[tn] = p;
tx[tn] = cx2;
tn++;
if (tn == 2)
goto edge_check_done;
}
/* check bottom clip rect edge: */
if (intersect_horiz(cy2, &p)) {
ty[tn] = cy2;
tx[tn] = p;
tn++;
if (tn == 2)
goto edge_check_done;
}
/* check left clip rect edge: */
if (intersect_vert(cx1, &p)) {
ty[tn] = p;
tx[tn] = cx1;
tn++;
}
edge_check_done:
if (tn == 1) {
append_vertex(tx[0], ty[0]);
} else if (tn == 2) {
if (dist_squared(x1, y1, tx[0], ty[0]) <
dist_squared(x1, y1, tx[1], ty[1])) {
append_vertex(tx[0], ty[0]);
append_vertex(tx[1], ty[1]);
} else {
append_vertex(tx[1], ty[1]);
append_vertex(tx[0], ty[0]);
}
}
if (n == last_n) {
GLfloat best_x=0, best_y=0;
uint32_t d, best_d = (unsigned int)-1; /* distance squared */
uint32_t max_d = dist_squared(x2, y2,
x[(i+2) % 4], y[(i+2) % 4]);
/* if there are no vertices on this line, it could be that
* there is a vertex of the clip rect that is enclosed by
* the transformed surface. Find the vertex of the clip
* rect that is reached by the shortest line perpendicular
* to the current edge, if any.
*
* slope of perpendicular is 1/m, so
*
* cy = -cx/m + c2
* c2 = cy + cx/m
*
*/
int perp_intersect(GLfloat cx, GLfloat cy, uint32_t *d)
{
GLfloat c2 = cy + cx/m;
GLfloat x = (c2 - c) / (m + 1/m);
/* if the x position of the intersection of the
* perpendicular with the transformed edge does
* not lie within the bounds of the edge, then
* no intersection:
*/
if (sign(x-x1) == sign(x-x2))
return 0;
*d = dist_squared(cx, cy, x, (m * x) + c);
/* if intersection distance is further away than
* opposite edge of surface region, it is invalid:
*/
if (*d > max_d)
return 0;
return 1;
}
if (perp_intersect(cx1, cy1, &d)) {
best_x = cx1;
best_y = cy1;
best_d = d;
}
if (perp_intersect(cx1, cy2, &d) && (d < best_d)) {
best_x = cx1;
best_y = cy2;
best_d = d;
}
if (perp_intersect(cx2, cy2, &d) && (d < best_d)) {
best_x = cx2;
best_y = cy2;
best_d = d;
}
if (perp_intersect(cx2, cy1, &d) && (d < best_d)) {
best_x = cx2;
best_y = cy1;
best_d = d;
}
if (best_d != (unsigned int)-1) // XXX can this happen?
append_vertex(best_x, best_y);
}
}
}
return n;
}
static int
texture_region(struct weston_surface *es, pixman_region32_t *region,
pixman_region32_t *surf_region)
{
struct weston_compositor *ec = es->compositor;
GLfloat *v, inv_width, inv_height;
unsigned int *vtxcnt, nvtx = 0;
pixman_box32_t *rects, *surf_rects;
int i, j, k, nrects, nsurf;
rects = pixman_region32_rectangles(region, &nrects);
surf_rects = pixman_region32_rectangles(surf_region, &nsurf);
/* worst case we can have 8 vertices per rect (ie. clipped into
* an octagon):
*/
v = wl_array_add(&ec->vertices, nrects * nsurf * 8 * 4 * sizeof *v);
vtxcnt = wl_array_add(&ec->vtxcnt, nrects * nsurf * sizeof *vtxcnt);
inv_width = 1.0 / es->pitch;
inv_height = 1.0 / es->geometry.height;
for (i = 0; i < nrects; i++) {
pixman_box32_t *rect = &rects[i];
for (j = 0; j < nsurf; j++) {
pixman_box32_t *surf_rect = &surf_rects[j];
GLfloat sx, sy;
GLfloat ex[8], ey[8]; /* edge points in screen space */
int n;
/* The transformed surface, after clipping to the clip region,
* can have as many as eight sides, emitted as a triangle-fan.
* The first vertex in the triangle fan can be chosen arbitrarily,
* since the area is guaranteed to be convex.
*
* If a corner of the transformed surface falls outside of the
* clip region, instead of emitting one vertex for the corner
* of the surface, up to two are emitted for two corresponding
* intersection point(s) between the surface and the clip region.
*
* To do this, we first calculate the (up to eight) points that
* form the intersection of the clip rect and the transformed
* surface.
*/
n = calculate_edges(es, rect, surf_rect, ex, ey);
if (n < 3)
continue;
/* emit edge points: */
for (k = 0; k < n; k++) {
surface_from_global_float(es, ex[k], ey[k], &sx, &sy);
/* position: */
*(v++) = ex[k];
*(v++) = ey[k];
/* texcoord: */
*(v++) = sx * inv_width;
*(v++) = sy * inv_height;
}
vtxcnt[nvtx++] = n;
}
}
return nvtx;
}
static void
triangle_fan_debug(struct weston_surface *surface, int first, int count)
{
struct weston_compositor *compositor = surface->compositor;
int i;
GLushort *buffer;
GLushort *index;
int nelems;
static int color_idx = 0;
static const GLfloat color[][4] = {
{ 1.0, 0.0, 0.0, 1.0 },
{ 0.0, 1.0, 0.0, 1.0 },
{ 0.0, 0.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 1.0 },
};
nelems = (count - 1 + count - 2) * 2;
buffer = malloc(sizeof(GLushort) * nelems);
index = buffer;
for (i = 1; i < count; i++) {
*index++ = first;
*index++ = first + i;
}
for (i = 2; i < count; i++) {
*index++ = first + i - 1;
*index++ = first + i;
}
glUseProgram(compositor->solid_shader.program);
glUniform4fv(compositor->solid_shader.color_uniform, 1,
color[color_idx++ % ARRAY_LENGTH(color)]);
glDrawElements(GL_LINES, nelems, GL_UNSIGNED_SHORT, buffer);
glUseProgram(compositor->current_shader->program);
free(buffer);
}
static void
repaint_region(struct weston_surface *es, pixman_region32_t *region,
pixman_region32_t *surf_region)
{
struct weston_compositor *ec = es->compositor;
GLfloat *v;
unsigned int *vtxcnt;
int i, first, nfans;
/* The final region to be painted is the intersection of
* 'region' and 'surf_region'. However, 'region' is in the global
* coordinates, and 'surf_region' is in the surface-local
* coordinates. texture_region() will iterate over all pairs of
* rectangles from both regions, compute the intersection
* polygon for each pair, and store it as a triangle fan if
* it has a non-zero area (at least 3 vertices, actually).
*/
nfans = texture_region(es, region, surf_region);
v = ec->vertices.data;
vtxcnt = ec->vtxcnt.data;
/* position: */
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[0]);
glEnableVertexAttribArray(0);
/* texcoord: */
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[2]);
glEnableVertexAttribArray(1);
for (i = 0, first = 0; i < nfans; i++) {
glDrawArrays(GL_TRIANGLE_FAN, first, vtxcnt[i]);
if (ec->fan_debug)
triangle_fan_debug(es, first, vtxcnt[i]);
first += vtxcnt[i];
}
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(0);
ec->vertices.size = 0;
ec->vtxcnt.size = 0;
}
static void
weston_compositor_use_shader(struct weston_compositor *compositor,
struct weston_shader *shader)
{
if (compositor->current_shader == shader)
return;
glUseProgram(shader->program);
compositor->current_shader = shader;
}
static void
weston_shader_uniforms(struct weston_shader *shader,
struct weston_surface *surface,
struct weston_output *output)
{
int i;
glUniformMatrix4fv(shader->proj_uniform,
1, GL_FALSE, output->matrix.d);
glUniform4fv(shader->color_uniform, 1, surface->color);
glUniform1f(shader->alpha_uniform, surface->alpha);
for (i = 0; i < surface->num_textures; i++)
glUniform1i(shader->tex_uniforms[i], i);
}
WL_EXPORT void
weston_surface_draw(struct weston_surface *es, struct weston_output *output,
pixman_region32_t *damage) /* in global coordinates */
{
struct weston_compositor *ec = es->compositor;
/* repaint bounding region in global coordinates: */
pixman_region32_t repaint;
/* non-opaque region in surface coordinates: */
pixman_region32_t surface_blend;
GLint filter;
int i;
pixman_region32_init(&repaint);
pixman_region32_intersect(&repaint,
&es->transform.boundingbox, damage);
pixman_region32_subtract(&repaint, &repaint, &es->clip);
if (!pixman_region32_not_empty(&repaint))
goto out;
pixman_region32_subtract(&ec->primary_plane.damage,
&ec->primary_plane.damage, &repaint);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
if (ec->fan_debug) {
weston_compositor_use_shader(ec, &ec->solid_shader);
weston_shader_uniforms(&ec->solid_shader, es, output);
}
weston_compositor_use_shader(ec, es->shader);
weston_shader_uniforms(es->shader, es, output);
if (es->transform.enabled || output->zoom.active)
filter = GL_LINEAR;
else
filter = GL_NEAREST;
for (i = 0; i < es->num_textures; i++) {
glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(es->target, es->textures[i]);
glTexParameteri(es->target, GL_TEXTURE_MIN_FILTER, filter);
glTexParameteri(es->target, GL_TEXTURE_MAG_FILTER, filter);
}
/* blended region is whole surface minus opaque region: */
pixman_region32_init_rect(&surface_blend, 0, 0,
es->geometry.width, es->geometry.height);
pixman_region32_subtract(&surface_blend, &surface_blend, &es->opaque);
if (pixman_region32_not_empty(&es->opaque)) {
if (es->shader == &ec->texture_shader_rgba) {
/* Special case for RGBA textures with possibly
* bad data in alpha channel: use the shader
* that forces texture alpha = 1.0.
* Xwayland surfaces need this.
*/
weston_compositor_use_shader(ec, &ec->texture_shader_rgbx);
weston_shader_uniforms(&ec->texture_shader_rgbx, es, output);
}
if (es->alpha < 1.0)
glEnable(GL_BLEND);
else
glDisable(GL_BLEND);
repaint_region(es, &repaint, &es->opaque);
}
if (pixman_region32_not_empty(&surface_blend)) {
weston_compositor_use_shader(ec, es->shader);
glEnable(GL_BLEND);
repaint_region(es, &repaint, &surface_blend);
}
pixman_region32_fini(&surface_blend);
out:
pixman_region32_fini(&repaint);
}
WL_EXPORT void WL_EXPORT void
weston_surface_restack(struct weston_surface *surface, struct wl_list *below) weston_surface_restack(struct weston_surface *surface, struct wl_list *below)
{ {

@ -482,6 +482,9 @@ weston_surface_to_global_float(struct weston_surface *surface,
GLfloat sx, GLfloat sy, GLfloat *x, GLfloat *y); GLfloat sx, GLfloat sy, GLfloat *x, GLfloat *y);
void void
weston_surface_from_global_float(struct weston_surface *surface,
GLfloat x, GLfloat y, GLfloat *sx, GLfloat *sy);
void
weston_surface_from_global(struct weston_surface *surface, weston_surface_from_global(struct weston_surface *surface,
int32_t x, int32_t y, int32_t *sx, int32_t *sy); int32_t x, int32_t y, int32_t *sx, int32_t *sy);
void void
@ -501,10 +504,6 @@ void
weston_surface_activate(struct weston_surface *surface, weston_surface_activate(struct weston_surface *surface,
struct weston_seat *seat); struct weston_seat *seat);
void void
weston_surface_draw(struct weston_surface *es,
struct weston_output *output, pixman_region32_t *damage);
void
notify_motion(struct weston_seat *seat, uint32_t time, notify_motion(struct weston_seat *seat, uint32_t time,
wl_fixed_t x, wl_fixed_t y); wl_fixed_t x, wl_fixed_t y);
void void

@ -20,6 +20,8 @@
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/ */
#include <stdlib.h>
#include "compositor.h" #include "compositor.h"
static const char * static const char *
@ -58,6 +60,551 @@ print_egl_error_state(void)
egl_error_string(code), (long)code); egl_error_string(code), (long)code);
} }
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) > (b)) ? (b) : (a))
#define clip(x, a, b) min(max(x, a), b)
#define sign(x) ((x) >= 0)
static int
calculate_edges(struct weston_surface *es, pixman_box32_t *rect,
pixman_box32_t *surf_rect, GLfloat *ex, GLfloat *ey)
{
int i, n = 0;
GLfloat min_x, max_x, min_y, max_y;
GLfloat x[4] = {
surf_rect->x1, surf_rect->x2, surf_rect->x2, surf_rect->x1,
};
GLfloat y[4] = {
surf_rect->y1, surf_rect->y1, surf_rect->y2, surf_rect->y2,
};
GLfloat cx1 = rect->x1;
GLfloat cx2 = rect->x2;
GLfloat cy1 = rect->y1;
GLfloat cy2 = rect->y2;
GLfloat dist_squared(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2)
{
GLfloat dx = (x1 - x2);
GLfloat dy = (y1 - y2);
return dx * dx + dy * dy;
}
void append_vertex(GLfloat x, GLfloat y)
{
/* don't emit duplicate vertices: */
if ((n > 0) && (ex[n-1] == x) && (ey[n-1] == y))
return;
ex[n] = x;
ey[n] = y;
n++;
}
/* transform surface to screen space: */
for (i = 0; i < 4; i++)
weston_surface_to_global_float(es, x[i], y[i], &x[i], &y[i]);
/* find bounding box: */
min_x = max_x = x[0];
min_y = max_y = y[0];
for (i = 1; i < 4; i++) {
min_x = min(min_x, x[i]);
max_x = max(max_x, x[i]);
min_y = min(min_y, y[i]);
max_y = max(max_y, y[i]);
}
/* First, simple bounding box check to discard early transformed
* surface rects that do not intersect with the clip region:
*/
if ((min_x > cx2) || (max_x < cx1) ||
(min_y > cy2) || (max_y < cy1))
return 0;
/* Simple case, bounding box edges are parallel to surface edges,
* there will be only four edges. We just need to clip the surface
* vertices to the clip rect bounds:
*/
if (!es->transform.enabled) {
for (i = 0; i < 4; i++) {
ex[n] = clip(x[i], cx1, cx2);
ey[n] = clip(y[i], cy1, cy2);
n++;
}
return 4;
}
/* Hard case, transformation applied. We need to find the vertices
* of the shape that is the intersection of the clip rect and
* transformed surface. This can be anything from 3 to 8 sides.
*
* Observation: all the resulting vertices will be the intersection
* points of the transformed surface and the clip rect, plus the
* vertices of the clip rect which are enclosed by the transformed
* surface and the vertices of the transformed surface which are
* enclosed by the clip rect.
*
* Observation: there will be zero, one, or two resulting vertices
* for each edge of the src rect.
*
* Loop over four edges of the transformed rect:
*/
for (i = 0; i < 4; i++) {
GLfloat x1, y1, x2, y2;
int last_n = n;
x1 = x[i];
y1 = y[i];
/* if this vertex is contained in the clip rect, use it as-is: */
if ((cx1 <= x1) && (x1 <= cx2) &&
(cy1 <= y1) && (y1 <= cy2))
append_vertex(x1, y1);
/* for remaining, we consider the point as part of a line: */
x2 = x[(i+1) % 4];
y2 = y[(i+1) % 4];
if (x1 == x2) {
append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2));
append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2));
} else if (y1 == y2) {
append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2));
append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2));
} else {
GLfloat m, c, p;
GLfloat tx[2], ty[2];
int tn = 0;
int intersect_horiz(GLfloat y, GLfloat *p)
{
GLfloat x;
/* if y does not lie between y1 and y2, no
* intersection possible
*/
if (sign(y-y1) == sign(y-y2))
return 0;
x = (y - c) / m;
/* if x does not lie between cx1 and cx2, no
* intersection:
*/
if (sign(x-cx1) == sign(x-cx2))
return 0;
*p = x;
return 1;
}
int intersect_vert(GLfloat x, GLfloat *p)
{
GLfloat y;
if (sign(x-x1) == sign(x-x2))
return 0;
y = m * x + c;
if (sign(y-cy1) == sign(y-cy2))
return 0;
*p = y;
return 1;
}
/* y = mx + c */
m = (y2 - y1) / (x2 - x1);
c = y1 - m * x1;
/* check for up to two intersections with the four edges
* of the clip rect. Note that we don't know the orientation
* of the transformed surface wrt. the clip rect. So if when
* there are two intersection points, we need to put the one
* closest to x1,y1 first:
*/
/* check top clip rect edge: */
if (intersect_horiz(cy1, &p)) {
ty[tn] = cy1;
tx[tn] = p;
tn++;
}
/* check right clip rect edge: */
if (intersect_vert(cx2, &p)) {
ty[tn] = p;
tx[tn] = cx2;
tn++;
if (tn == 2)
goto edge_check_done;
}
/* check bottom clip rect edge: */
if (intersect_horiz(cy2, &p)) {
ty[tn] = cy2;
tx[tn] = p;
tn++;
if (tn == 2)
goto edge_check_done;
}
/* check left clip rect edge: */
if (intersect_vert(cx1, &p)) {
ty[tn] = p;
tx[tn] = cx1;
tn++;
}
edge_check_done:
if (tn == 1) {
append_vertex(tx[0], ty[0]);
} else if (tn == 2) {
if (dist_squared(x1, y1, tx[0], ty[0]) <
dist_squared(x1, y1, tx[1], ty[1])) {
append_vertex(tx[0], ty[0]);
append_vertex(tx[1], ty[1]);
} else {
append_vertex(tx[1], ty[1]);
append_vertex(tx[0], ty[0]);
}
}
if (n == last_n) {
GLfloat best_x=0, best_y=0;
uint32_t d, best_d = (unsigned int)-1; /* distance squared */
uint32_t max_d = dist_squared(x2, y2,
x[(i+2) % 4], y[(i+2) % 4]);
/* if there are no vertices on this line, it could be that
* there is a vertex of the clip rect that is enclosed by
* the transformed surface. Find the vertex of the clip
* rect that is reached by the shortest line perpendicular
* to the current edge, if any.
*
* slope of perpendicular is 1/m, so
*
* cy = -cx/m + c2
* c2 = cy + cx/m
*
*/
int perp_intersect(GLfloat cx, GLfloat cy, uint32_t *d)
{
GLfloat c2 = cy + cx/m;
GLfloat x = (c2 - c) / (m + 1/m);
/* if the x position of the intersection of the
* perpendicular with the transformed edge does
* not lie within the bounds of the edge, then
* no intersection:
*/
if (sign(x-x1) == sign(x-x2))
return 0;
*d = dist_squared(cx, cy, x, (m * x) + c);
/* if intersection distance is further away than
* opposite edge of surface region, it is invalid:
*/
if (*d > max_d)
return 0;
return 1;
}
if (perp_intersect(cx1, cy1, &d)) {
best_x = cx1;
best_y = cy1;
best_d = d;
}
if (perp_intersect(cx1, cy2, &d) && (d < best_d)) {
best_x = cx1;
best_y = cy2;
best_d = d;
}
if (perp_intersect(cx2, cy2, &d) && (d < best_d)) {
best_x = cx2;
best_y = cy2;
best_d = d;
}
if (perp_intersect(cx2, cy1, &d) && (d < best_d)) {
best_x = cx2;
best_y = cy1;
best_d = d;
}
if (best_d != (unsigned int)-1) // XXX can this happen?
append_vertex(best_x, best_y);
}
}
}
return n;
}
static int
texture_region(struct weston_surface *es, pixman_region32_t *region,
pixman_region32_t *surf_region)
{
struct weston_compositor *ec = es->compositor;
GLfloat *v, inv_width, inv_height;
unsigned int *vtxcnt, nvtx = 0;
pixman_box32_t *rects, *surf_rects;
int i, j, k, nrects, nsurf;
rects = pixman_region32_rectangles(region, &nrects);
surf_rects = pixman_region32_rectangles(surf_region, &nsurf);
/* worst case we can have 8 vertices per rect (ie. clipped into
* an octagon):
*/
v = wl_array_add(&ec->vertices, nrects * nsurf * 8 * 4 * sizeof *v);
vtxcnt = wl_array_add(&ec->vtxcnt, nrects * nsurf * sizeof *vtxcnt);
inv_width = 1.0 / es->pitch;
inv_height = 1.0 / es->geometry.height;
for (i = 0; i < nrects; i++) {
pixman_box32_t *rect = &rects[i];
for (j = 0; j < nsurf; j++) {
pixman_box32_t *surf_rect = &surf_rects[j];
GLfloat sx, sy;
GLfloat ex[8], ey[8]; /* edge points in screen space */
int n;
/* The transformed surface, after clipping to the clip region,
* can have as many as eight sides, emitted as a triangle-fan.
* The first vertex in the triangle fan can be chosen arbitrarily,
* since the area is guaranteed to be convex.
*
* If a corner of the transformed surface falls outside of the
* clip region, instead of emitting one vertex for the corner
* of the surface, up to two are emitted for two corresponding
* intersection point(s) between the surface and the clip region.
*
* To do this, we first calculate the (up to eight) points that
* form the intersection of the clip rect and the transformed
* surface.
*/
n = calculate_edges(es, rect, surf_rect, ex, ey);
if (n < 3)
continue;
/* emit edge points: */
for (k = 0; k < n; k++) {
weston_surface_from_global_float(es, ex[k], ey[k], &sx, &sy);
/* position: */
*(v++) = ex[k];
*(v++) = ey[k];
/* texcoord: */
*(v++) = sx * inv_width;
*(v++) = sy * inv_height;
}
vtxcnt[nvtx++] = n;
}
}
return nvtx;
}
static void
triangle_fan_debug(struct weston_surface *surface, int first, int count)
{
struct weston_compositor *compositor = surface->compositor;
int i;
GLushort *buffer;
GLushort *index;
int nelems;
static int color_idx = 0;
static const GLfloat color[][4] = {
{ 1.0, 0.0, 0.0, 1.0 },
{ 0.0, 1.0, 0.0, 1.0 },
{ 0.0, 0.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 1.0 },
};
nelems = (count - 1 + count - 2) * 2;
buffer = malloc(sizeof(GLushort) * nelems);
index = buffer;
for (i = 1; i < count; i++) {
*index++ = first;
*index++ = first + i;
}
for (i = 2; i < count; i++) {
*index++ = first + i - 1;
*index++ = first + i;
}
glUseProgram(compositor->solid_shader.program);
glUniform4fv(compositor->solid_shader.color_uniform, 1,
color[color_idx++ % ARRAY_LENGTH(color)]);
glDrawElements(GL_LINES, nelems, GL_UNSIGNED_SHORT, buffer);
glUseProgram(compositor->current_shader->program);
free(buffer);
}
static void
repaint_region(struct weston_surface *es, pixman_region32_t *region,
pixman_region32_t *surf_region)
{
struct weston_compositor *ec = es->compositor;
GLfloat *v;
unsigned int *vtxcnt;
int i, first, nfans;
/* The final region to be painted is the intersection of
* 'region' and 'surf_region'. However, 'region' is in the global
* coordinates, and 'surf_region' is in the surface-local
* coordinates. texture_region() will iterate over all pairs of
* rectangles from both regions, compute the intersection
* polygon for each pair, and store it as a triangle fan if
* it has a non-zero area (at least 3 vertices, actually).
*/
nfans = texture_region(es, region, surf_region);
v = ec->vertices.data;
vtxcnt = ec->vtxcnt.data;
/* position: */
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[0]);
glEnableVertexAttribArray(0);
/* texcoord: */
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[2]);
glEnableVertexAttribArray(1);
for (i = 0, first = 0; i < nfans; i++) {
glDrawArrays(GL_TRIANGLE_FAN, first, vtxcnt[i]);
if (ec->fan_debug)
triangle_fan_debug(es, first, vtxcnt[i]);
first += vtxcnt[i];
}
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(0);
ec->vertices.size = 0;
ec->vtxcnt.size = 0;
}
static void
weston_compositor_use_shader(struct weston_compositor *compositor,
struct weston_shader *shader)
{
if (compositor->current_shader == shader)
return;
glUseProgram(shader->program);
compositor->current_shader = shader;
}
static void
weston_shader_uniforms(struct weston_shader *shader,
struct weston_surface *surface,
struct weston_output *output)
{
int i;
glUniformMatrix4fv(shader->proj_uniform,
1, GL_FALSE, output->matrix.d);
glUniform4fv(shader->color_uniform, 1, surface->color);
glUniform1f(shader->alpha_uniform, surface->alpha);
for (i = 0; i < surface->num_textures; i++)
glUniform1i(shader->tex_uniforms[i], i);
}
static void
draw_surface(struct weston_surface *es, struct weston_output *output,
pixman_region32_t *damage) /* in global coordinates */
{
struct weston_compositor *ec = es->compositor;
/* repaint bounding region in global coordinates: */
pixman_region32_t repaint;
/* non-opaque region in surface coordinates: */
pixman_region32_t surface_blend;
GLint filter;
int i;
pixman_region32_init(&repaint);
pixman_region32_intersect(&repaint,
&es->transform.boundingbox, damage);
pixman_region32_subtract(&repaint, &repaint, &es->clip);
if (!pixman_region32_not_empty(&repaint))
goto out;
pixman_region32_subtract(&ec->primary_plane.damage,
&ec->primary_plane.damage, &repaint);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
if (ec->fan_debug) {
weston_compositor_use_shader(ec, &ec->solid_shader);
weston_shader_uniforms(&ec->solid_shader, es, output);
}
weston_compositor_use_shader(ec, es->shader);
weston_shader_uniforms(es->shader, es, output);
if (es->transform.enabled || output->zoom.active)
filter = GL_LINEAR;
else
filter = GL_NEAREST;
for (i = 0; i < es->num_textures; i++) {
glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(es->target, es->textures[i]);
glTexParameteri(es->target, GL_TEXTURE_MIN_FILTER, filter);
glTexParameteri(es->target, GL_TEXTURE_MAG_FILTER, filter);
}
/* blended region is whole surface minus opaque region: */
pixman_region32_init_rect(&surface_blend, 0, 0,
es->geometry.width, es->geometry.height);
pixman_region32_subtract(&surface_blend, &surface_blend, &es->opaque);
if (pixman_region32_not_empty(&es->opaque)) {
if (es->shader == &ec->texture_shader_rgba) {
/* Special case for RGBA textures with possibly
* bad data in alpha channel: use the shader
* that forces texture alpha = 1.0.
* Xwayland surfaces need this.
*/
weston_compositor_use_shader(ec, &ec->texture_shader_rgbx);
weston_shader_uniforms(&ec->texture_shader_rgbx, es, output);
}
if (es->alpha < 1.0)
glEnable(GL_BLEND);
else
glDisable(GL_BLEND);
repaint_region(es, &repaint, &es->opaque);
}
if (pixman_region32_not_empty(&surface_blend)) {
weston_compositor_use_shader(ec, es->shader);
glEnable(GL_BLEND);
repaint_region(es, &repaint, &surface_blend);
}
pixman_region32_fini(&surface_blend);
out:
pixman_region32_fini(&repaint);
}
static void static void
repaint_surfaces(struct weston_output *output, pixman_region32_t *damage) repaint_surfaces(struct weston_output *output, pixman_region32_t *damage)
{ {
@ -66,7 +613,7 @@ repaint_surfaces(struct weston_output *output, pixman_region32_t *damage)
wl_list_for_each_reverse(surface, &compositor->surface_list, link) wl_list_for_each_reverse(surface, &compositor->surface_list, link)
if (surface->plane == &compositor->primary_plane) if (surface->plane == &compositor->primary_plane)
weston_surface_draw(surface, output, damage); draw_surface(surface, output, damage);
} }
WL_EXPORT void WL_EXPORT void

Loading…
Cancel
Save