This just makes the two functions look a lot more like each other,
since for texture views I have to add some more code to them.
Reviewed-by: Gert Wollny <gert.wollny@collabora.com>
I want to change the incoming format to use some bits for texture
view support, so this is precursor to avoid causing problems.
Reviewed-by: Gert Wollny <gert.wollny@collabora.com>
When calling glGetnTexImage, glGetnCompressedTexImage, or
glCompressedTexSubImage*D and the data pointer is updated with the
per-slice offset but as bufSize value the full length of the
buffer was given, which can result in a crash of qemu when the buffer
size was not evaluated correctly.
Vor cubemaps instead of passing the size of the whole buffer pass the
size of the slice to make sure that glGetnTexImage doesn't write to
unallocated memory.
v2: Correct handling for 3D textures that are read as one big chunk
vs. cubemaps that are read slice-by-slice (Gurchetan Singh)
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Signed-off-by: Jakob Bornecrantz <jakob@collabora.com>
For rgb8 and rgb16 textures the element size is 3 and 6 respectively,
and the packing must correspond to the component size (1 and 2).
Fixes:
dEQP-GLES3.functional.texture.specification.basic_teximage3d.rgb16i_3d
dEQP-GLES3.functional.texture.specification.basic_teximage3d.rgb16ui_3d
dEQP-GLES3.functional.texture.specification.basic_teximage3d.rgb8i_3d
dEQP-GLES3.functional.texture.specification.basic_teximage3d.rgb8ui_3d
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Signed-off-by: Jakob Bornecrantz <jakob@collabora.com>
In the copy fallback, when a texture can not be rendered, the data that resides
in the backing iovec needs to be used. For the non-zero levels of mip-map textures
the data is located at an offset. This patch adds storing this offset and using it
when data is read from the backing iovec and updating the dst iov. We limit the
mip-map levels for which this is done to 1-17, which is enough to cover
32kx32k textures. The patch also fixes the stride when accessing mip-map levels.
Fixes:
dEQP-GLES3.functional.texture.specification.teximage3d_depth.depth_component24_2d_array
dEQP-GLES3.functional.texture.specification.texsubimage3d_depth.depth_component32f_2d_array
dEQP-GLES3.functional.texture.specification.texsubimage3d_depth.depth_component24_2d_array
dEQP-GLES3.functional.texture.specification.texsubimage3d_depth.depth_component16_2d_array
dEQP-GLES3.functional.texture.specification.texsubimage3d_depth.depth32f_stencil8_2d_array
dEQP-GLES3.functional.texture.specification.texsubimage3d_depth.depth24_stencil8_2d_array
v2: * rebase and remove unused variables
* also correct offset when writing to the destination backing iovec
v3: * follow mesa/virgl notation and range for storing the mip-map offsets
Suggested-by: Gurchetan Singh <gurchetansingh@chromium.org>
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Signed-off-by: Jakob Bornecrantz <jakob@collabora.com>
Since the code path emmiting these warnings is no longer used, remove
them and, because with this removal the ctx parameter is now unused,
remove it as well.
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Signed-off-by: Jakob Bornecrantz <jakob@collabora.com>
GLES doesn't have glGetTexImage, so we rely on the assumption that a
resource's backing iovec is always in sync with the texture data if it
isn't renderable.
Fixes on GLES host:
dEQP-GLES3.functional.texture.shadow.*
dEQP-GLES3.functional.texture.wrap.etc2_*.
dEQP-GLES3.functional.texture.units.*
v2: * Special-case VIRGL_FORMAT_Z24X8_UNORM (Gert Wollny)
v3: * Use IOV backing store as data source only on GLES
* Keep backing store only up to date only on GLES
(both Gurchetan Singh)
* copy the backing store data before it is corrected for the Z24X8
format upload
* remove test whether the src surface is renderable, because at this
point it is only relevant whether glGetTexImage is available (i.e.
whether we are on a GLES host)
* Reword commit message
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Signed-off-by: Tomeu Vizoso <tomeu.vizoso@collabora.com>
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Signed-off-by: Jakob Bornecrantz <jakob@collabora.com>
Allow the caller to provide a pre-opened DRM file descriptor, to be
used by the EGL context.
Bump callback interface version for compatibility.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Setting the sampler parameter GL_TEXTURE_CUBE_MAP_SEAMLESS in GLES generates a GL_INVALID_ENUM error.
This patch completes the previously committed patch 241b88ac8c.
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Signed-off-by: Dave Airlie <airlied@redhat.com>
This refactors out the shader type code into a separate function,
makes it easier to add compute support later.
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
This pulls the per shader type code out into a separate function.
This is prep work for adding compute shaders.
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
This just pulls in a bunch of TGSI changes from upstream
that make adding GLES3.1 features easier.
Reviewed-by: Gurchetan Singh <gurchetansingh@chromium.org>
Reviewed-by: Gert Wollny <gert.wollny@collabora.com>
[airlied: I split this bit out - bisections are a lot easier]
Reviewed-by: Dave Airlie <airlied@redhat.com>
Reason: the second parameter in glBufferSubData() is the offset,
but in vrend_read_from_iovec_cb() function in iov.c, the "count"
is passed to it causing to possibly write beyond the buffer boundary
(or at wrong offset).
Reviewed-by: Gert Wollny <gert.wollny@collabora.com>
[airlied: I split this bit out - bisections are a lot easier]
Reviewed-by: Dave Airlie <airlied@redhat.com>
[airlied: pushed the get up a bit higher to make it cleaner]
Reviewed-by: Jakob Bornecrantz <jakob@collabora.com>
Reviewed-by: Dave Airlie <airlied@redhat.com>
v2: With epoxy GL/gl.h is not directly included (Dave Airlie).
Instead move the include of epoxy/gl.h from vrend_renderer.c to
vrend_renderer.h
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Reviewed-by: Dave Airlie <airlied@redhat.com>
Allow resources created externally (eg gbm created buffers as
dma bufs) to be used. As an example, crosvm
(https://chromium.googlesource.com/chromiumos/platform/crosvm/)
will intercept resource creation to use minigbm to allocate
buffers that its compositor is able to properly handle since it
only supports compositing with buffers allocated via minigbm.
This patch allows direct rendering to those buffers without
requiring an extra copy.
v2: Handle missing extension better.
v3: Update commit message with more details on usage.
Signed-off-by: David Riley <davidriley@chromium.org>
Reviewed-by: Dave Airlie <airlied@redhat.com>
virgl_renderer_resource_get_info() doesn't return the underlying image
stride. eglExportDMABUFImageMESA() does. This fixes imports failing
due to a stride mismatch under certain resolutions. (note that qemu
uses its own export methods, perhaps because Gerd noticed the problem
with virgl egl export functions)
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
On GLES a multi-sample FBO region can only be blit to an non multi-sample
region if the source and the target rectangle are the same. The fallback
using GL and shaders doesn't work if a stencil buffer is involved, because
writing to a stencil buffer from a shader is usually not supported (i.e.
the extension ARB_shader_stencil_export is not available).
Implement a workaround for this case and also the case when the depth
buffer is involved by first blitting the complete multi-sample FBO to an
intermediate, non multi-sample FBO, and apply the region blit to the
actual target FBO afterwards.
Fixes:
dEQP-GLES3.functional.fbo.invalidate.sub.unbind_blit_msaa_color
dEQP-GLES3.functional.fbo.invalidate.sub.unbind_blit_msaa_depth
dEQP-GLES3.functional.fbo.invalidate.sub.unbind_blit_msaa_stencil
dEQP-GLES3.functional.fbo.invalidate.whole.unbind_blit_msaa_color
dEQP-GLES3.functional.fbo.invalidate.whole.unbind_blit_msaa_depth
dEQP-GLES3.functional.fbo.invalidate.whole.unbind_blit_msaa_stencil
v2: * Replace allocation via the formerly extracted resource allocation
funtion with allocating the texture via the newly extracted methods
to copy the texture parameters and allocate the texture.
* in the intermediate blit use the minified size that corresonds
to the layer to be copied
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
Reviewed-by: Dave Airlie <airlied@redhat.com>
Two functions are extracted from vrend_renderer_resource_create to
make it possible to allocate a texture resource without adding too much
code duplication:
vrend_renderer_resource_copy_args:
copies all required arguments from the args struct into the
already allocated resource
vrend_renderer_resource_allocate_texture:
Allocate a texture using the parameters in the given resource struct
v2: * instead of extracting the complete allocation also including buffers,
only extract the parts that copy the parameters and allocate the texture
* use latest upstream that also includes texture storage objects
Signed-off-by: Gert Wollny <gert.wollny@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
Reviewed-by: Dave Airlie <airlied@redhat.com>
This also exposes patches as a primitive type
v2: enable patch varyings
v3: update patch varyings value from GL API.
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
This adds the so movs emission along with setting the correct
primitive in begin for tessellation shaders
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
This adds all the shader program building and dirtying for
tess shaders.
The big change is building the key so that we get the correct
tess input/output blocks.
It might be possible SSO could reduce some of that overheads
v2: fixup warnings
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
This adds support for tess factors and tess coord semantics
v2: remove no wm settings for some vars, fix int required for
vertices in, fix tessinner/outer building, handle primid/verticesin
as ints.
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
Just add clip dist support for tess shaders.
v2: drop create_swizzled changes no need at this point
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
This takes the tgsi shader properties and emits the correct GLSL
layouts.
It also exports the tes prim and point info to the renderer,
for transform feedback
v2: add prim/point for transform feedback
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
This adds the shader key bits, along with a bunch of the
string handling for tess shaders
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
tess will needs this as well
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>
This name makes more sense if we have output blocks
Tested-by: Elie Tournier <elie.tournier@collabora.com>
Reviewed-by: Elie Tournier <elie.tournier@collabora.com>
Tested-by: Jakob Bornecrantz <jakob@collabora.com>