Compile time constants play an important role in keeping the shader
programs fast. Introduce an informal annotation to mark compile time
constants to make the shader code easier to reason with.
This will make much more sense once functions with compile time constant
parameters are added.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Trying to support GL ES 2.0 + extensions along with GL ES 3.0 for better
control is becoming too complicated fast. In this patch you see the
GL_RGBA vs. GL_RBA16F and GL_HALF_FLOAT vs. GL_HALF_FLOAT_OES paths.
More such cases will come, e.g. GL_RED_EXT vs. GL_R32F.
Make things simpler and require GL ES 3.0 +
GL_EXT_color_buffer_half_float for all color management related
functionality. If one doesn't have GL ES 3.0, all you lose is color
management.
Also, all extensions needed by color transformation operations are
gathered under one boolean flag instead of having a flag per extension,
again for simplicity.
This makes the GL ES extension handling much easier.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This reverts commit 36d699a164.
A different way to fix this same issue is the previous commit
"gl-renderer: do not unbind the context on output destroy"
which is needed for other reasons.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
If we make EGL_NO_CONTEXT current, all following GL calls are
no-ops. This will be a problem when gl-renderer introduces
gl_renderer_color_transform containing GL textures and needs to destroy
them when weston_color_transform is destroyed. Mesa would print the the
warning that glDeleteTextures is no-op.
To fix this, keep our GL context current when destroying a GL output.
In case EGL_KHR_surfaceless_context is not available, we must use
dummy_surface.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This is needed when the compositor produces any content internally:
- the lines in triangle fan debug
- the censoring color fill (unmet HDCP requirements)
Solid color surfaces do not need this special-casing because
weston_surface is supposed to carry color space information, which will
get used in gl_shader_config_init_for_view().
This makes sure the internally produced graphics fit in, e.g on a
monitor in HDR mode.
For now, just ensure there is an identity transformation. Actual
implementations in GL-renderer will follow later.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This is needed when drawing anything internal directly to an output,
like the borders/decorations in a nested compositor setup. This makes
the assumption that the internal stuff starts in sRGB, which should be
safe. As borders are never blended with other content, this should also
be sufficient.
This patch is a reminder that that path exists, rather than a real
implementation. To be implemented when someone needs it.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This is the blending space to monitor space color transform. It needs to
be implemented in the renderers, unless a backend sets
from_blend_to_output_by_backend = true, in which case the backend does
it and the renderer does not.
The intention is that from_blend_to_output_by_backend can be toggled
frame by frame to allow backends to react to dynamic change of output
color profile.
For now, renderers just assert that they don't need to do anything for
output color transform.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
See: https://gitlab.freedesktop.org/wayland/weston/-/issues/467#note_814985
This starts building the framework required for implementing color
management.
The main new interface is struct weston_color_manager. This commit also
adds a no-op color manager implementation, which is used if no other
color manager is loaded. This no-op color manager simply provides
identity color transforms for everything, so that Weston keeps running
exactly like before.
weston_color_manager interface is incomplete and will be extended later.
Colorspace objects are not introduced in this commit. However, when
client content colorspace and output colorspace definitions are
combined, they will produce color transformations from client content to
output blending space and from output blending space to output space.
This commit introduces a placeholder struct for color transforms,
weston_color_transform. Objects of this type are expected to be heavy to
create and store, which is why they are designed to be shared as much as
possible, ideally making their instances unique. As color transform
description is intended to be generic in libweston core, renderers and
backends are expected to derive their own state for each transform
object as necessary. Creating and storing the derived state maybe be
expensive as well, more the reason to re-use these objects as much as
possible. E.g. GL-renderer might upload a 3D LUT into a texture and keep
the texture around. DRM-backend might create a KMS blob for a LUT and
keep that around.
As a color transform depends on both the surface and the output, a
transform object may need to be created for each unique pair of them.
Therefore color transforms are referenced from weston_paint_node. As
paint nodes exist for not just surface+output but surface+view+output
triplets, the code ensures that all paint nodes (having different view)
for the same surface+output have the same color transform state.
As a special case, if weston_color_transform is NULL, it means identity
transform. This short-circuits some checks and memory allocations, but
it does mean we use a separate member on weston_paint_node to know if
the color transform has been initialized or not.
Color transformations are pre-created at the weston_output
paint_node_z_order_list creation step. Currently the z order lists
contain all views globally, which means we populate color transforms we
may never need, e.g. a view is never shown on a particular output.
This problem should get fixed naturally when z order lists are
constructed "pruned" in the future: to contain only those paint nodes
that actually contribute to the output's image.
As nothing actually supports color transforms yet, both renderers and
the DRM-backend assert that they only get identity transforms. This
check has the side-effect that all surface-output pairs actually get a
weston_surface_color_transform_ref even though it points to NULL
weston_color_transform.
This design is inspired by Sebastian Wick's Weston color management
work.
Co-authored-by: Sebastian Wick <sebastian@sebastianwick.net>
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
A following patch will need the paint node in
gl_shader_config_init_for_view() for color transformations.
While passing the paint node through, rename the functions to be more
appropriate and get surface/view/output from the paint node.
This is a pure refactoring with no functional change.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Iterate paint nodes instead of the global view list. Right now this does
not change behavior.
This is a step towards using per-output view lists that can then be
optimized for the output in libweston core.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
In "backend-drm: simplify compile time array copy", ARRAY_COPY was
introduced to be used by the DRM-backend.
In this patch we expand its usage to other code where hardcoded arrays
are being copied.
Signed-off-by: Leandro Ribeiro <leandro.ribeiro@collabora.com>
EGL implementations have no way to tell that implicit modifiers are not
supported. So Weston must consider that implicit modifiers are
supported. Always add DRM_FORMAT_MOD_INVALID to formats that we query
from EGL.
The implication is that clients using dmabuf extension may pick
DRM_FORMAT_MOD_INVALID to allocate their buffers, and so these buffers
will not be directly imported to KMS and placed in planes. See commit
"backend-drm: do not import dmabuf buffers with no modifiers to KMS" for
more details.
But we should not avoid advertising DRM_FORMAT_MOD_INVALID in the dmabuf
protocol just because we hope that the client don't choose it, it's not
our choice.
Signed-off-by: Leandro Ribeiro <leandro.ribeiro@collabora.com>
In commit "libweston: add struct weston_drm_format" struct
weston_drm_format and its helper functions were added to libweston.
The functions query_dmabuf_formats and query_dmabuf_modifiers are very
specific to GL-renderer and its internals. So instead of exposing them
in libweston, query and store DRM formats and modifiers internally in
GL-renderer. Also, add a vfunction to struct weston_renderer in order
to retrieve the formats.
Signed-off-by: Leandro Ribeiro <leandro.ribeiro@collabora.com>
Now that pieces of color management implementation start to land, the
fallback shader becomes even more special than before. It is the only
case where the compositor ignores color management.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
The texture target can be uniquely inferred from the shader variant, so
do not store texture target separately.
Shortens the code a bit.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Replace the shader_requirements with just shader_variant. The variant is
the only thing gl_surface_state will actually carry. All the other
requirements fields are always unused.
Co-authored-by: Sebastian Wick <sebastian@sebastianwick.net>
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This patch gathers all values to be loaded to shader uniforms into a new
struct gl_shader_config along with texture target and filter
information. Struct gl_shader becomes opaque outside of gl-shaders.c.
Everything that used or open-coded these are converted.
The aim is to make gl-renderer.c easier to read. Previously, uniform
values were loaded up in various places, texture units were set up in
one place, textures were bound into units in different places. Stuff was
all over the place.
Now, shader requirements and associated uniform data is stored in a
single struct. The data is loaded into a shader program in one function
only.
That makes it easy for things like maybe_censor_override() to replace
the whole config rather than poke only the shader requirements. This may
not look like much right now, but when color management adds more
uniforms and even hardcoded color need to go through the proper color
pipeline, doing things the old way would become intractable.
Similar simplification can be seen in draw_view(), where the RGBA->RGBX
override becomes more contained. There is no longer a need to "pre-load"
the shader used by triangle fan debug. Triangle fan debug no longer
needs to play tricks with saving and restoring the current shader.
The real benefit of this change will probably come when almost all
shader operations need to take color spaces into account. That means
filling in gl_shader_config parts based on a color transformation.
This is based on an idea Sebastian already used in his Weston color
management work.
Co-authored-by: Sebastian Wick <sebastian@sebastianwick.net>
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Avoid looking up 'gr' from view->compositor by passing it explicitly
into the functions needing it.
Also fixes the whitespace in repaint_region() signature.
Clarifies code by removing local variables, but also future changes will
need 'gr' more.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
A future change will call this function from draw_view(), so move it
upwards to avoid adding a function declaration.
No functional or even cosmetic change.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
These functions are related to shaders, so they are more at home in
gl-shaders.c. gl-renderer.c is too long already.
This allows making a couple functions static while the moved functions
become non-static. Future changes turn some of these functions into
static again, with the ultimate goal of making struct gl_shader opaque.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This adds a heuristic for freeing shader programs that have not been
needed for a while. The intention is to stop Weston accumulating shader
programs indefinitely, especially in the future when color management
will explode the number of possible different shader programs.
Shader programs that have not been used in the past minute are freed,
except always keep the ten most recently used shader programs anyway.
The former rule is to ensure we keep shader programs that are actively
used regardless of how many. The latter rule is to prevent freeing too
many shader programs after Weston has been idle for a long time and then
repaints just a small area. Many of the shader programs could still be
relevant even though not needed in the first repaint after idle.
The numbers ten and one minute in the above are arbitrary and not based
on anything.
These heuristics are simpler to implement than e.g. views taking
references on shader programs. Expiry by time allows shader programs to
survive a while even after their last user is gone, with the hope of
being re-used soon. Tracking actual use instead of references also
adapts to what is actually visible rather than what merely exists.
Keeping the shader list in most recently used order might also make
gl_renderer_get_program() more efficient on average.
last_repaint_start time is used for shader timestamp to avoid calling
clock_gettime() more often. Adding that variable is an ABI break, but
libweston major has already been bumped to 10 since last release.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This is useful for seeing that the shader program garbage collection
works in a future patch.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
One more thing is coming to need this, so add the compositor pointer and
migrate existing places to use it where it simplifies things.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
I have verified that the conversion here follows ITU-R BT.601 except for
the offsets 16/256 and 128/256 which should be 16/255 and 128/255
respectively.
I used to following octave script to verify this:
rf = 0.299;
gf = 0.587;
bf = 0.114;
crdiv = 1.402;
cbdiv = 1.772;
M = [ rf, gf, bf ;
-rf / cbdiv, -gf / cbdiv, (1 - bf) / cbdiv;
(1 - rf) / crdiv, -gf / crdiv, -bf / crdiv ];
YCbCr = [ 'Y'; 'Cb'; 'Cr' ];
RGB = [ 'R'; 'G'; 'B' ];
eq = [ ' '; '='; ' ' ];
l = [ ' [ '; ' [ '; ' [ ' ];
r = [ ' ] '; ' ] '; ' ] ' ];
mat = [
sprintf('%9f %9f %9f', M(1,:));
sprintf('%9f %9f %9f', M(2,:));
sprintf('%9f %9f %9f', M(3,:));
];
[ l YCbCr r eq l mat r l RGB r ]
R = inv(M);
mat = [
sprintf('%9f %9f %9f', R(1,:));
sprintf('%9f %9f %9f', R(2,:));
sprintf('%9f %9f %9f', R(3,:));
];
[ l RGB r eq l mat r l YCbCr r ]
[ R(:,1), R(:,2:3) .* (255/224) ]
The final matrix printed is what the shader uses down to +/- one digit,
so at least 7 correct decimals.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Sampling input texture has nothing to do with view alpha. This clarifies
the code structure.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Reading the input texture is just one part of the future color pipeline,
so separate it into a function of its own. This makes it easier to add
more steps to the pipeline, and shows the green tint is separate as
well.
Making use of early returns, reducing the if-else ladder should help
with readability. Sharing the call to yuva2rgba() likewise.
Setting yuva.w = alpha is not shared though, in case support for AYUV
format might be added in the future.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Do not call texture2D() in the shader when we already have the result.
Simpler code, maybe even a little bit faster?
Suggested-by: Harish Krupo <harishkrupo@gmail.com>
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
These same magic constants were used in all cases, so move them into a
common place.
While we are touching all these lines, also change from the four floats
into a vec4. This allows further clean-up in the next patch.
This makes the code easier to read.
Behavior and results are unchanged.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Mathematically the result is the same, while multiplying RGB with alpha
is easier to understand as correct than the earlier form.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
A more unique name is easier to grep for. Using 'color' as a local
variable might be useful in the future.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This support is added so that the XYUV shader variant can be tested with
wl_shm from the test suite.
Libwayland version requirement is bumped to get WL_SHM_FORMAT_XYUV8888.
Libwayland is bumped to 1.18 too in the CI image. libwayland-dev package
is dropped, because we build wayland anyway.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This header is for sharing fallback definitions for drm_fourcc.h. A new
test in tests/yuv-buffer-test.c is going to be needing XYUV8888 format,
and more new formats will be expected with HDR supports.
Share these fallback definitions in one place instead of copying them
all over.
All users of drm_fourcc.h are converted to include weston-drm-fourcc.h
instead for consistency: have the same definitions available everywhere.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
These were introduced in libdrm 2.4.68, commit
268ae7cae5afd76462c3ef14ed9021a2d40c2e57. Weston unconditionally
requires libdrm >= 2.4.95, so these fallback definitions are
unnecessary now.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Extend the existing output-damage test to test
blit_shadow_to_output() specifically. This function had problems
originally, so make sure they can't reappear.
The added quirk is explained in the test.
An additional check of the quirk in gl_renderer_output_create() ensures
that the shadow framebuffer is really used. The test could false-pass if
the shadow is not used.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Proper color management will need blending done with linear light pixel
values, that is, EOTF applied before blending, and then inverse-EOTF
applied for scanout after blending. The simplest way to set that up is
to use an intemediate framebuffer a.k.a shadow buffer containing the
composited image in linear light values, then blit from that to the
actual framebuffer.
This patch implements the shadow buffer, but the linear light
blending is left for another patch. This allows GL-renderer to turn
WESTON_CAP_COLOR_OPS on.
Half-float is chosen as the buffer format because linear light values
require more bits to encode with sufficient precision than the usual
non-linear pixel values.
v2: Use /* */ instead of // (Pekka)
Rename fbo and tex to shadow_{fbo,tex} (Pekka)
Check for OpenGLES capabilities before creating
shadow_{tex,fbo} (Pekka)
Signed-off-by: Harish Krupo <harishkrupo@gmail.com>
v3: Rebased.
Simplified GL version checks (Sebastian)
Apply changes from "libweston: add color ops cap and bool renderer
shadow buffer"
Renamed supports_half_float_texture to has_gl_half_float to
follow the existing naming pattern.
Introduce gl_renderer_create_shadow_16f().
Undo moving of glViewport() call.
Replace half_float_texture_enabled with shadow_exists().
Introduce struct gl_output_state_shadow.
Assert no resizing with shadow.
Fix triangle fan debug.
Rename repaint_from_texture() to blit_shadow_to_output().
Rewrite commit message because linear light blending is not
implemented in this patch.
Fix blit_shadow_to_output() for scaled/transformed outputs and
remove redundant code.
Fix has_gl_half_float determination.
v4: Disable blending in blit_shadow. (Daniel)
Port to gl_renderer_get_program().
Make a generic fbo-texture struct with parameterized format. (Daniel)
Change has_gl_half_float into gl_half_float_type.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This helps accounting how many shaders live in the cache, what the
shader source code is, and when shaders are compiled.
Signed-off-by: Harish Krupo <harishkrupo@gmail.com>
v2: Resolved rebase conflicts.
Put shader_scope in struct gl_renderer, remove struct
gl_shader_generator.
Wrote commit message.
Rebased for "gl-renderer: rewrite fragment shaders" which completely
changed how shader sources are generated.
Added cache statistics to debug output on subscribe.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Various functions leave the current active texture as whatever. The
functions touched in this commit forgot to reset the active texture to
slot 0 before binding their textures. If not explicitly unbound, this
could leave textures lingering in unused slots, perhaps. Not sure if
that could cause any harm, but for consistency's sake, always use slot 0
when not multitexturing.
Found by code inspection.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
If shader compiling on demand fails, then rather than using whatever
random shader happens to be current, use an explicit fallback shader
painting stuff brown.
The color is chosen dim enough to hopefully not cause problems even in
a HDR setting as it will be written verbatim into the fb/shadow.
This also prevents NULL dereference on shader->key.variant in
draw_view().
One way to test this shader is to hack fragment.glsl:
#if DEF_VARIANT == SHADER_VARIANT_EXTERNAL
#extension GL_OES_EGL_image_external : require
+#error haa haa
#endif
and then run e.g. weston-simple-dmabuf-v4l -f YUYV
with vivid kernel module loaded. This worked on Intel.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
If we are trying to use a NULL shader, it is likely that the shader
compilation failed for some reason. Since we are trying this for a view,
the failure was probably triggered by a client. If there is a client,
get rid of it by sending it a protocol error. Hopefully the compositor
can then continue operation after a glitch on screen.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This patch modifies the shader generation code so that the shaders are
stitched together based on the requirement instead of creating them
during initialization. This is necessary for HDR use cases where each
surface would have different properties based on which different
de-gamma or tone mapping or gamma shaders are stitched together.
v2: Use /* */ instead of // (Pekka)
Move shader strings to gl-shaders.c file (Pekka)
Remove Makefile.am changes (Pekka)
Use a struct instead of uint32_t for storing requirements (Pekka)
Clean up shader list on destroy (Pekka)
Rename shader_release -> shader_destroy (Pekka)
Move shader creation/deletion into gl-shaders.c (Pekka)
Use create_shaders's multi string capbility instead of
concatenating (Pekka)
v3: Add length check when adding shader string (Pekka)
Signed-off-by: Harish Krupo <harishkrupo@gmail.com>
v4: Rebased, PROTECTION_MODE_ENFORCED converted.
Dropped unnecessary { }.
Ported setup_censor_overrides().
Split out moving code into gl-shaders.c.
Changed to follow "gl-renderer: rewrite fragment shaders",
no more shader source stitching.
Added SHADER_VARIANT_XYUV.
Const'fy function arguments.
Added gl_shader_requirements_cmp() and moved the early return in
use_gl_program().
Moved use_gl_program() before first use in file.
Split solid shader requirements by use case: requirements_censor and
requirements_triangle_fan.
Simplified fragment_debug_binding() since no need to force anything.
Ensure struct gl_shader_requirements has no padding. This allows us
to use normal C syntax instead of memset() and memcpy() when
initializing or assigning. See also:
https://gitlab.freedesktop.org/mesa/mesa/-/issues/2071
Make it also a bitfield to squeeze the size.
v5: Move wl_list_insert() into gl_shader_create() (Daniel)
Compare variant to explicit value. (Daniel)
Change functions to gl_renderer_get_program,
gl_renderer_use_program, and
gl_renderer_use_program_with_view_uniforms.
Use local variable instead of gr->current_shader. (Daniel)
Simplified gl_renderer_get_program.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Do not change in setup_censor_overrides() and then put back gs->shader
in draw_view() when the shader needs to be something else than what the
surface content calls for.
This makes the logic simpler, and makes following changes simpler as
well.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
To help debugging shader compilation errors, print the shader source the
way it was given to the GLSL compiler and with line numbers that match
the compiler error messages.
This is necessary because some snippets are added at runtime to the
beginning, the source is not only what is in the respective .glsl file.
I did look into using #line directives, but you cannot put source file
names to it, only "source string numbers" which must be an integer
expression. If we used #line, the reader would need to know that string
number 0 is the version, string 1 is the config and string number 2 is
fragment.glsl. I think that would have been too cumbersome.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
The main goal of this patch is to improve the readability of how and
what fragment shaders are generated.
Instead of having C code that assembles each shader variant from literal
string snippets, create one big fragment shader source that has
everything in it. This relies on a GLSL compiler to optimize statically
false conditions and unused uniforms away.
Having all the fragment shader code in one file, uncluttered by C string
literal syntax, improves readability significantly. A disadvantage is
that the code is more verbose, but it allows comments much better.
The actual shader code is kept unchanged except:
- FRAGMENT_CONVERT_YUV macro is now a proper function
- GLSL version is explicitly set to 1.00 ES
- RGBA and EXTERNAL use the same path, the difference is how the sampler
is declared
Further shader code consolidation is possible, but is left for another
time.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This patch adds the tooling for incorporating files as C data, so that
files can be built into the binaries. The tool is in Python to avoid
adding extra dependencies like xxd.
xxd.py is copied from Mesa as-is, from commit
b729cd58d76f97f3fc04a67569535ee5ef2f5278 (master branch on 2021-01-26),
a.k.a 21.0-branchpoint-635-gb729cd58d76.
Moving the GLSL vertex shader into a separate file is not that
interesting, the purpose of this commit is to provide a simple
demonstration of the tooling. The real benefits come in a following
patch where the fragment shaders are re-written and externalized.
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>
This is purely moving code as is with no changes other than making the
three functions non-static.
Originally this was part of "gl-renderer: Requirement based shader
generation" by Harish Krupo, but that patch made also big changes to the
code at the same time. Patches are easier to review when code movement
is separate from behavioral changes, therefore I introduced this patch.
Cc: Harish Krupo <harishkrupo@gmail.com>
Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.com>