Allow an input method to forward (unfiltered) key and modifier events
from the hardware keyboard to the client.
Signed-off-by: Jan Arne Petersen <jpetersen@openismus.com>
Send state and modifier from the demo keyboard with the keysym event and
take them into account in the editor example.
Add some helper functions to write and read a modifiers_map array.
Signed-off-by: Jan Arne Petersen <jpetersen@openismus.com>
Rename the key event in text_model to keysym and add serial, time and
modifiers arguments. Add a modifiers_map event to transfer an array of
0-terminated modifier names, so that a mapping of modifiers to the
modifier bit mask is possible.
Signed-off-by: Jan Arne Petersen <jpetersen@openismus.com>
This new client, called transformed, renders a cross with the top part
red and the right green, with the same transform as the output the
surface is in.
This is based on simple-egl.
Implement the wl_surface.set_buffer_transform request. This includes
tracking the double-buffered buffer transformation parameter and making
the gl renderer able to handle transformed buffers.
Config file, WAYLAND_SOCKET, XDG_CONFIG_HOME, segfault handler.
NOTE: This is a candidate for the stable branch
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Add some documentation about the DRM backend into its own man page, and
refer to it in weston(1).
Environment variable, that are reserved for backends, and currently used
only by the DRM backend, are moved to weston-drm page.
NOTE: This is a candidate for the stable branch
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Rename print_egl_error_state() to gl_renderer_print_egl_error_state()
and exports it.
Remove the copy of that function from the rpi backend, and call
the exported function instead.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Backends may move surfaces to different planes, in which case damage is
generated in the primary plane. This damage is usually passed to the
renderer, but in some cases the backend may decide to not render
anything (that's the case when drm compositor scans out a client
buffer). In that case the damage on the primary plane would be
discarded, leading to artifacts later.
This patch makes the backend's responsibility to clear the damage on
the primary plane, so that unrendered damage is kept for as long as
necessary.
On the first frame with zoom activated, the spring used for animation
will have a current value of zero. The translation calculated with that
value will be invalid (not a number). Using this value later leads to
having an invalid output matrix, so nothing is composited in the first
zoomed frame.
This problem is most evident when a sprite plane is being used. In that
case, enabling the zoom will cause the surface to be moved back to the
primary plane, but because of the bug described above, this surface
would not actually be rendered causing a quick flicker.
If simple-egl is toggled fullscreen, the opqaue region is set for the surface
but never removed after exiting fullscreen. This patch resets the opaque region
to 0 if the surface is not fullscreen and -o was not passed. This fixes the
problem introduced sometime since d7f282b84e, when this was last fixed.
Nothing uses it to create EGL-surfaces outside of window.c. This makes
refactoring the EGL-based code easier, since we do not need to support
EGL-based Cairo surfaces without an associated struct window.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
cairo_surface_t objects have a private set, either struct
shm_surface_data, or struct egl_window_surface_data. Use separate
private keys for each type to avoid mismatch.
This makes display_get_buffer_for_surface() safe, in that it won't
return garbage for an EGL-based cairo surface.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Struct surface_data was not really useful, and it definitely was not
used with EGL-based windows.
This also fixes a semantic mistake, where struct shm_surface_data was
put into cairo_surface_t private, but got out as struct surface_data
instead. Due to struct layout, however, this did not cause a real bug.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Leftovers from
commit f02a649a3c
Author: Kristian Høgsberg <krh@bitplanet.net>
Date: Mon Mar 12 01:05:25 2012 -0400
Consolidate image loading code and move to shared/
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
I do not think these are meant to be called by the applications
directly. Applications certainly do not have to call them.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Change simple-shm to properly process the wl_buffer.release event, and
not reuse a buffer until it is released by the server, as specified in
the protocol.
In case the server has not released the buffer, but signals that it has
been shown (frame callback), allocate a second buffer. Simple-shm will
now automatically do double-buffering if needed.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Move fields current_buffer and buffer_damage out of weston_output into
gl_output_state, since they are actually specific to the renderer.
Also bring back the previous_damage field so that the screenshooter
can get the damage for the previous frame in a renderer independent
way.
disable_planes should only be incremented when zoom.active actually
toggles. Otherwise the counter will be incremented too many times,
and planes will no longer get used.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Ander Conselvan de Oliveira <ander.conselvan.de.oliveira@intel.com>
This moves the surface color state into gles2-renderer. To do this it
adds two new weston_renderer functions. create_surface to be able to
create per-surface renderer state, and surface_set_color to set the
color of a surface and changes it to a color surface.
This moves the EGLConfig, EGLContext and EGLDisplay fields into
gles2-renderer. It also moves EGLDisplay creation and EGLConfig
selection into gles2-renderer.
This introduces callbacks for output creation and destruction for the
gles2-renderer. This enables the gles2-renderer to have per-output
state. EGL surface creation is now done by the output_create callback
and the EGL surface is stored in the new per-output gles2-renderer
state. On the first output_create call, the gles2-renderer will setup
it's GL context. This is because EGL requires a EGL surface to be able
to use the GL context.
This makes drm_fb_get_from_bo() use drmModeAddFB2() if possible so that
drm_output_prepare_overlay_surface() can use this instead of keeping
track of the fbs and buffers itself.
Let the compositor generic code decide what to do when the buffer goes
away. We still have a valid reference do the bo, so we can still show
the client contents until something else triggers a repaint.
If the sprite is disabled and we're not enabling it on the next frame,
nothing is done in the vblank handler, so there's no need to ask for a
vblank event.
The old implementation didn't work because we set the minimum and maximum
sizes so that the WM can't resize us. That makes the fullscreen protocol
not work. Additionally we were requesting fullscreen after mapping, which
requires the more complicated (and potentially flickery) client message
approach.
Now we just set the _NET_WM_STATE before mapping and avoid setting
the size hints in case of fullscreen. That's all good, but the problem
is that we now have to wait for configure notify before we know
what size our output will be. For now we just block and pull events from
X until we get the size.
Ideally we would treat the map as an output hotplug event and just add the
output at that point, but we can't start up with no outputs present.
That may be worth fixing, but for now, the block-on-map is fine.
Dispmanx elements are like hardware overlays. Assign one weston_surface
to each overlay created, and the VideoCore will composite it on screen.
The maximum number of elements is configurable via the command line.
Specifying zero will disable the overlays (planes/elements) altogether,
and use only GLESv2 compositing.
You need an up-to-date Raspberry Pi firmware for:
- vc_dispmanx_resource_create(), that will also take stride. Otherwise
surfaces ending up in elements may show up as corrupted.
- off-line compositing support. The on-line compositing of elements
cannot handle too many elements. Look for the comments around
DEFAULT_MAX_PLANES in the code.
Elements must be double-buffered to avoid tearing. Therefore two buffers
(Dispmanx resources) are allocated for each element. A command line
option is added to allow single-buffering instead to save memory, with
the risk of tearing.
The page flip timer is replaced with the Dispmanx update completion
callback. The callback is executed in a separate thread, therefore a
pipe is set up to integrate properly with Weston core.
If not disabled, usually all surfaces are assigned into planes, and
nothing is composited in GLESv2. Planes do not support surface
transformations though, so compositing will automatically switch the
necessary surfaces to GLESv2 compositing as needed. Switching between
GLESv2 and elements may cause transient visual glitches and jerks.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>